Характеристики и параметры операционных усилителей. Амплитудно- и фазочастотные характеристики оу Амплитудная характеристика оу

К основным характеристикам ОУ относятся: передаточная (ПХ), амплитудно-частотная (АЧХ), логарифмическая амплитудно-частотная (ЛАЧХ), фазово-частотная (ФЧХ) характеристики.

1) Передаточные характеристики ОУ приведены на рис. .

На рис.6.6,а показано включение двухвходового ОУ во внешнюю цепь, содержащую два разнополярных источника питания (обычно с одинаковыми значениями напряжений и
), резистор нагрузки
и источник входного сигнала +–
.

Рис. . Статическая передаточная характеристика ОУ.

Выходное напряжение ОУ может симметрично изменяться в обеих полярностях относительно нуля (быть двухполярным), причем, если
, то и
. Это условие называется условием баланса ОУ. Напряжение сигнала также может быть двухполярным. Учтем, что ОУ управляется напряжением
, наблюдаемым между входами ОУ независимо от точки заземления источника сигнала. Если заземлен инвертирующий вход ОУ, то усилитель является неинвертирущий, его передаточная характеристика (ПХ) показана на рис.6.6,б (кривая 1). В этом случае входной и выходной сигналы ОУ изменяются в одной фазе.

Если заземлен неинвертирующий вход ОУ, то схема включения является инвертирующей (кривая 2 на рис.6.6), а входной и выходной сигналы находятся в противофазе.

Как и в простейшем ДУ, в реальном ОУ наблюдается разбаланс. На рис.1в. представлена передаточная характеристика (кривая 1) реального ОУ, сбалансированного подачей внешнего напряжения смещения нулевого уровня.

Влияние сопротивления нагрузки на амплитуду выходного сигнала определяется выходным сопротивлением усилителя и допустимым уровнем тока, при котором не происходит ограничения сигнала в оконечном каскаде. Кроме того, максимальный допустимый уровень выходного тока должен быть безопасным для выходного каскада усилителя. На рис.6.7,д. представлены передаточные характеристики ОУ для различных сопротивлений нагрузок. На рис. приведена эквивалентная схема, где выходное сопротивление
включается последовательно с резистором нагрузи
и генератором выходной Э.Д.С.
.

В ряде схем включения на входах ОУ присутствует синфазная ЭДС
, которая вызывает сдвиг выходного уровня
. Чтобы вновь сбалансировать ОУ, необходимо добавить между входами дифференциальный сигнал компенсации синфазной ошибки
. Генератор модулирующий это напряжение включен на эквивалентной схеме в цепь неинвертирующего входа (рис.).

Рис.6.8. Компенсация разбаланса, возникающего из-за синфазной ЭДС с помощью генератора
(а); сдвиг передаточной характеристики и образование ошибки смещения
из-за уменьшения положительного (б) и отрицательного (в) напряжений питания.

2) Амплитудно-часотная и фазочастотная характеристики.

Аналитическое выражение коэффициента усиления ОУ, равное отношению выходного напряже­ния к входному, можно записать в виде

где
- коэффициент усиления ОУ без ОС для области средних частот;f c - сопрягающая или граничная часто­та, на которой коэффициент усиления уменьшается на –3 дБ. В том случае, когда выполняется характерное для ОУ неравенство
, сопрягающая частота определяется по формуле
.

На практике часто используется не комплексное вы­ражение коэффициента усиления, а его модуль

.

Так как частота f является переменной величиной, a f c - фиксированной, то легко заметить, что при увели­чении частоты знаменатель выражения () увеличи­вается, а коэффициент усиления напряжения ОУ умень­шается.

Графическая зависимость модуля коэффициента уси­ления напряжения ОУ от частоты представляет собой АЧХ, которая показана на рис. штриховой линией 2. Как видно из рисунка, АЧХ изображена в логариф­мическом масштабе и аппроксимирована отрезком прямой 1, что часто используется на практике для удобства анализа.

Операционный усилитель, предназначенный для универсального применения, из соображений устойчивости должен иметь такую же частотную характеристику, что и фильтр нижних частот первого порядка (инерционное звено), причем это требование должно удовлетворяться, по крайней мере, вплоть до частоты единичного усиления , частоты при которой коэффициент усиления при разомкнутой петле обратной связи равен единице. При этом фазовый сдвиг выходного гармонического сигнала изменяется от нуля (т.к. ОУ является УПТ) до
. На рис. приведена АЧХ и ФЧХ однокаскадного УПТ (простейший ОУ).

Граничная частота () определяется как частота, на которой коэффициент усиления уменьшается на 3 децибела:
.

Область частот 0называют полосой пропускания. Введение ООС расширяет полосу пропускания (график 2 на рис.).

При этом
;
;
, где– коэффициент передачи сигнала по цепи обратной связи.

При изменении частоты фаза выходного напряжения сдвигается относительно фазы входного на угол, рав­ный
. Так как выходное напряжение ОУ от­стает по фазе от входного, то перед углом сдвига ста­вится знак минус:

.

Это объясняется следующим образом. Сигнал проходит через ОУ не мгновенно, а задерживается на некоторое время в активных и пассивных элементах ОУ. С ростом частоты усиливаемого сигнала увеличивается сдвиг по фазе между выходным и входным напряжениями ОУ.

Графическая зависимость фазового сдвига между вы­ходным и входным напряжениями ОУ от частот пред­ставляет собой ФЧХ, которая изображена на рис. . Из рисунка и выражения () видно, что при f=f фазовый сдвиг между выходным и входным напряже­ниями ОУ равен –45°. Когда f приближается к частоте единичного усиления f угол сдвига стремится к –90°. В простейшем случае ФЧХ можно аппроксимировать отрезком прамой с небольшим отклонением от реальной кривой, не пре­вышающим ±5,7° (±0,1 рад).

Последовательная RС – цепь имеет скорость спада АЧХ –20 дБ/дек или –6 дБ/окт. Так как каждый уси­лительный каскад ОУ в простейшем случае представля­ется эквивалентной схемой, состоящей из последова­тельно соединенных R и С, то он также имеет скорость спада АЧХ –20 дБ/дек. Это подтверждается выраже­нием (). Например, при увеличении частоты f в де­сять раз на частотном участке, где
, коэффициент усиления каскада уменьшается в десять раз:

Для трехкаскадного ОУ коэффициент усиления ра­вен произведению коэффициентов усиления его отдель­ных каскадов

Полученное выражение достаточно громоздко, поэтому часто пользуются весьма наглядной и простой для по­нимания диаграммой Боде - графиком зависимости де­сятичного логарифма коэффициента усиления от деся­тичного логарифма частоты. Это удобно, так как значе­ния коэффициентов усиления каскадов, выраженные в децибелах, можно складывать, вместо того чтобы их перемножать [см. формулу ()]. Таким образом, АЧХ ОУ можно получить, построив на одном графике АЧХ его каскадов и графически их сложив (рис.).

На частотах, меньших , общая АЧХ ОУ является суммой коэффициентов усиления отдельных каскадов (30 дБ + 20 дБ + 10 дБ), в полосе частот
общий коэффициент усиления падает на –20 дБ/дек, в полосе частот
он уменьшается на –40 дБ/дек, а в поло­се частот
все три каскада имеют скорость спада АЧХ по –20дБ/дек, в результате суммарная скорость спада АЧХ ОУ равна –60 дБ/дек. Такой подход широ­ко используется при анализе не только ОУ, но и всех многокаскадных усилителей.

В каждом каскаде ОУ происходит задержка сигнала, что приводит к суммар­ному запаздыванию по фазе выходного сигнала относи­тельно входного. Для трехкаскадного ОУ

Согласно () максимально возможное запаздывание сигнала по фазе для двух каскадов ОУ составляет –180°, а для трех каскадов –270°. Для частот, мень­ших сопрягающей частоты , запаздывание сигнала по фазе одного каскада меньше –45 °, а для трех каскадов меньше –135°. Угол сдвига фазы между выходным и входным напряжениями ОУ зависит от частоты нели­нейно. Это вызывает определенные сложности при по­строении ФЧХ несмотря на то, что две точки ФЧХ опре­деляются легко (при

, при

). В связи с этим часто ФЧХ ОУ аппроксимируется не асимптотами, как АЧХ, а ступенчатыми отрезками, как это показано ломаной линией 1 на рис. . Если при аппроксимации АЧХ ОУ прямолинейными отрезками наибольшая погрешность составляет –3 дБ, то при ап­проксимации ФЧХ ОУ прямолинейными ступенчатыми отрезками она равна –45°.

Рис. . Характеристики операционного усилителя: а) суммарная трехкаскадного усилителя; б) фазочастотная (1 – аппроксимированная; 2 – реальная)

является функцией частоты и с ее увеличением падает. Частотная и фазовая характеристики ОУ складываются из характеристик отдельных внутренних каскадов, каждый из которых имеет свою собственную постоянную времени и может быть представлен в виде RC-цепочки. Суммарная частотная характеристика ОУ аппроксимируется диаграммой Боде (рис.). Каждый каскад вносит фазовый сдвиг 90°, поэтому общий фазовый сдвиг зависит от количества каскадов и имеет вид, показанный на рис.3,а внизу. Поскольку на выходе ОУ уже имеется сдвиг фазы 180° относительно инвертирующего входа, на который подается ООС, то на некоторой частоте суммарный сдвиг фазы достигает 360°. Если на этой частоте величина
, где– коэффициент ОС, то отрицательная ОС превращается в положительную, что приводит к самовозбуждению схемы.

Рис. . Аппроксимированная логарифмическая амплитудно-частотная (ЛАЧХ) и фазочастотная характеристики.

Динамические свойства ОУ характеризуются частотой единично­го усиления , максимальной скоростью нарастания выходного на­пряжения
и временем установления выходного напряжения
(временем затухания переходного процесса). С частотойсвя­зано время установления
. Чем меньше частота единичного уси­ления, тем оно больше. В то же время
зависит не только от, но и от формы АЧХ. Минимальное значение
получается при за­тухании АЧХ –20 дБ/дек.

Отметим, что приведенные соотношения справедливы только для достаточно малого сигнала, при котором скорость изменения выход­ного напряжения не превышает
. При большом сигнале проис­ходит перегрузка ОУ и
возрастает. Чтобы обеспечить малое зна­чение
, следует иметь достаточно большое значение
.

Если двухкаскадный ОУ охватить отрицательной ОС, то на частоте единичного усиления, когда фазовый сдвиг будет равен –180°, может возникнуть положительная ОС, которая приведет к самовозбуждению ОУ. В трехкаскадном ОУ самовозбуждение может наступить на частоте, меньшей частоты единичного усиления, так как предельный фазовый сдвиг этого ОУ –270°. В связи с этим в трехкаскадных ОУ имеется большая опасность самовозбуждения, чем в двухкаскадных, и требуется частотная коррекция АЧХ. Поэтому среди интегральных ОУ в основном получили распространение двухкаскадные. Оконечный каскад ОУ, который выполняется в ви­де двухтактного эмиттерного повторителя и не усилива­ет напряжение, не принимается за усилительный каскад, обеспечивает как постоянство выходного напряжения, так и
усилителя.

Этот же вывод можно сделать и непосредственно из выражения
. До тех пор, пока
,
и не зависит от абсолютного значения
.

Если в рассматриваемом примере цепь ООС заменить на ПОС, то полоса усиливаемых частот усилителя уменьшится:

.

При этом частотную характеристику усилителя с ПОС можно получить смещением вверх горизонтального участка исходной характеристики на величину 201g(l–
) дБ. Новое значение верхней частоты пропускания усилителя
определится пересечением нового горизонтального участка с продолжением асимптоты с наклоном - 20дБ/дек (рис.). Таким образом, при введении ПОС полоса пропускания усилителя сужается в (1–
) раз.

Интегральные ОУ без ОС практически не используются. В связи с этим следует отметить, что

и
.

Тогда
. При

.

Рис. . Влияние обратной связи на частоту сопряжения операционного усилителя без обратной связи (1) и с обратной связью (2).

Сравнивая () с выражением (), легко устано­вить, что сопрягающая частота ОУ при наличии отри­цательной ОС равна сопрягающей частоте ОУ без ОС, умноженной на возвратную разность.

Из АЧХ (рис.) видно, что коэффициент усиле­ния ОУ без ОС равен 70 дБ, а с отрицательной ОС 20 дБ. Если частота сопряжения ОУ без ОС была 20 кГц, то при действии отрицательной ОС она стала 5,7 МГц. Отрицательная ОС ограничила коэффициент усиления ОУ до 20 дБ и значительно расширила полосу пропускания. В том случае, когда частота достигает 5,7 МГц, АЧХ ОУ без ОС и с ОС совпадают. Отметим, что отрицательная ОС не расширяет АЧХ ОУ, а часто­та сопряжения ОУ увеличивается за счет уменьшения коэффициента усиления.

Коэффициент усиления по контуру ОС, как это вид­но из рис. , является разностью между коэффициен­тами усиления ОУ без ОС и с ОС, выраженной в деци­белах. Это дает возможность определять его или сопря­гающую частоту графически. Для иллюстрации из­ложенного можно записать равенство

,

которое указывает, что коэффициент усиления по конту­ру ОС увеличивается при уменьшении коэффициента усиления ОУ с ОС.

В том случае, когда скорость спада АЧХ ОУ состав­ляет –20 дБ/дек, произведение коэффициента усиления ОУ на частоту единичного усиления есть величина по­стоянная (
=const). Это можно получить как из диаграммы Боде, так и аналитически:

Следует уточнить, что произведение коэффициента уси­ления на частоту единичного усиления остается посто­янным и имеет линейную зависимость только при ско­рости спада АЧХ –20 дБ/дек.

Следует отметить, что если значения близки, то суммарный наклон ЛАЧХ будет менее –20 дБ/дек. Это создает определенные трудности при использовании такого ОУ. Объясняется это тем, что при разработке конкретных схем сам ОУ, как правило, охва­тывают цепью ООС. При наклоне ЛАЧХ менее –20дБ/дек про­исходит потеря устойчивости. В этом случае в ОУ вводят дополнительную внешнюю или внутреннюю цепи коррек­ции, формирующие наклон его ЛАЧХ –20 дБ/дек во всем диапа­зоне частот, пока
. Такая коррекция обычно сужает полосу пропускания усилителя.

Если постоянная времени одного из каскадов усилителя суще­ственно больше других, то наклон –20 дБ/дек во всем диапазоне частот формируется самим усилителем и дополнительная коррек­ция может не понадобиться.

Таким образом, в любом случае типовая логарифмическая ам­плитудно-частотная характеристика ОУ во всем диапазоне частот имеет постоянный наклон –20 дБ/дек.

Следует отметить, что формирование ЛАЧХ, соответствующей передаточной функции в схеме двухкаскадного ОУ дости­гается более простыми средствами, чем в схеме трехкаскадного усилителя. Объясняется это тем, что максимальный наклон ЛАЧХ двухкаскадного ОУ составляет лишь -40 дБ/дек. в то время как в трехкаскадном ОУ он равен –60дБ/дек. Поэтому для коррек­ции двухкаскадного ОУ достаточно одной цепи коррекции, а для трехкаскадного ОУ таких цепей необходимо две.

Для коррекции частотных свойств двухкаскадного ОУ используется конденсатор
. Постоянная времени выходного каскада определяется его емкостью , где
- коэффициент усиления каскада с ОЭ по постоянному току,
- выходное сопротивление дифферен­циального каскада.

В дифференциальном каскаде использована схема «токового зеркала», поэтому
велико и
,
- постоянная времени дифференциального каскада. Постоянная временив пе­редаточной функции ОУ становится определяющей даже при ма­лой емкости
.

ЛАЧХ двухкаскадного усилителя в точке пересече­ния с осью имеет наклон –20 дБ/дек, т. е. такой ОУ при охвате его внешней безынерционной цепью ООС является абсолютно устойчивым звеном. Таким образом, внутренняя частотная коррекция ОУ выполняется одним конденсатором
малой емкости и легко реализуемым технологически.

ОУ по параметрам и характеристикам весьма разнообразны. В первом приближении отечественные ОУ можно разделить по параметрам на следующие группы:

1) Операционные усилители общего применения используются для построения узлов аппаратуры, имеющих суммарную приведенную погрешность на уровне 1%. Характеризуются относительно малой стоимостью и средним уровнем параметров (напряжение смеще­ния
- единицы милливольт, температурный дрейф
- десятки микровольт/°С, коэффициент усиления
- десятки ты­сяч, скорость нарастания
- от десятых долей до единиц вольт/микросекунд).

2) Операционные усилители с малым входным током - усилители с входным каскадом, построенным на полевых транзисторах. Вход­ной ток
пА.

3) Многоканальные операционные усилители имеют параметры, аналогичные усилителям общего применения или микромощным усилителям с добавлением такого параметра, как коэффициент разделения каналов. Они служат для улучшения массогабаритных показателей и снижения энергопотребления аппаратуры. Западные фирмы выпускают сдвоенные прецизионные и быстродействующие усилители.

4) Быстродействующие широкополосные операционные усилители используются для преобразования быстроизменяющихся сигналов. Они характеризуются высокой скоростью нарастания выходного сигнала, малым, временем установления, высокой частотой единичного усиления, а по остальным параметрам уступают операционным усилителям общего применения. К сожалению, для них не нормируется время восстановления после перегрузки.

Их основные параметры: скорость нарастания
В/мкс; время установления
мкс; частота единичного усиления
МГц.

5) Прецизионные (высокоточные) операционные усилители исполь­зуются для усиления малых электрических сигналов, сопровождае­мых высоким уровнем помех, и характеризуются малым значением напряжения смещения и его температурным дрейфом, большими коэффициентами усиления и подавления синфазного сигнала, большим входным сопротивлением и низким уровнем шумов. Как правило, имеют невысокое быстродействие.

6) Микромощные операционные усилители необходимы в случаях, когда потребляемая мощность жестко лимитирована (переносные приборы с автономным питанием, приборы, работающие в ждущем режиме). Ток потребления
мА.

7) Мощные и высоковольтные операционные усилители - усили­тели с выходными каскадами, построенными на мощных высоко­вольтных элементах. Выходной ток
мА; выходное напря­жение
В.

Таблицы с параметрами отечественных ОУ приведены в приложении А по данным .

5.4.1. Общие сведения об операционных усилителях

В классической электронике операционным усилителем принято называть линейный преобразователь, при помощи которого можно осуществлять различные математические операции – суммирование, вычитание, интегрирование, дифференцирование и др. Это и определило название таких усилителей – операционные (решающие), на основе которых путем введения обратных связей можно проводить математические операции. Интегральные ОУ предназначены не только для выполнения математических операций, но и для осуществления преобразования сигналов (усиления, обработки, формирования сигналов).

Условное графическое изображение и функциональное обозначение ОУ приведено на рис. 5.5.

Современные ОУ строятся по схеме прямого усиления с дифференциальными равноправными по электрическим параметрам входами (инверсный вход «○» или «−» и неинверсный вход – без обозначения или «+») и двухтактным двухполярным (по амплитуде сигнала) выходом. Основным элементом ОУ является входной каскад, построенный по схеме дифференциального усилителя (ДУ), назначение которого – усиление разности сигналов, наблюдаемой между его входами (рис. 5.6,а). ДУ имеет два транзистораVT1 иVT2 с коллекторными нагрузочными резисторамиR К. Эмиттерные токи этих транзисторов формируются с помощью генератора стабильного тока (ГСТ)I 0 , выполненного на транзисторахVT3 иVT4. При идентичности параметров транзисторовVT1 иVT2, равенстве коллекторных резисторов и условии, что входные сигналыU = U + = 0 , разность выходных сигналов ДУ будет равна нулю, поскольку для идеального ДУ эмиттерный токI 0 делится пополам между транзисторамиVT1 иVT2.

Из теории дифференциальных усилителей известно, что в режиме баланса потенциал каждого выхода имеет относительно земли синфазный уровень напряжения: .

Режиму баланса соответствует диаграмма (рис. 5.6, б) до момента времени t 1 . При появлении в моментt 1 сигналаU транзисторVT1 получает больший ток смещения и его коллекторный токI K 1 увеличивается, а ток транзистораVT2 уменьшается, так как

I K 1 + I K 2 = I 0 . Таким образом, с увеличением входного напряженияU − , выходное напряжение на выходе первого транзистора уменьшается
(приращение сигнала инвертировано по фазе). На другом выходе ДУ напряжение
будет увеличиваться (приращение сигнала не инвертировано по фазе). Полный дифференциальный выходной сигнал между выходами ДУ определяется соотношением:

Изменение выходных сигналов прекращается, когда весь ток I 0 начинает течь через транзисторVT1. В момент времениt2 транзисторVT2 переходит в режим отсечки. Поскольку входное сопротивление ДУ обратно пропорционально величине его рабочего токаI 0 , то этот ток задается обычно небольшим (десятки микроампер), а это в свою очередь определяет низкий коэффициент усиления ДУ:

где
- крутизна биполярного транзистора. В связи с этим, в интегральных ОУ используются последующие каскады усиления для получения большой величины коэффициента усиления по напряжению. В общем виде коэффициент усиления по напряжению ОУ равен произведению коэффициентов усиления всех его каскадов:
.

Абсолютные значения входных напряжений U , U + иU ВЫХ ограничены напряжением питания операционного усилителя+ U пит иU пит − (≤ ± 15 В). Типичным свойством передаточной характеристики ОУ является то, что она чувствительна к разности входных напряжений и не зависит от их абсолютных значений. Из этого свойства вытекает введение двух понятий: синфазного входного напряженияU СИНФ для общей составляющей напряжений на обоих их входах, которая должна быть подавлена усилителем, и дифференциального входного напряженияU Д , на которое усилитель реагирует:

,
,

где К = 1/2 или 0.

Для упрощения определения параметров ОУ обычно полагают К = 0, тогдаU СИНФ = U + .

Интегральные ОУ обычно состоят из входного дифференциального каскада, каскадов усиления, каскада, преобразующего двухфазный выход дифференциального усилителя в однофазный и каскада для сдвига уровня. На выходе усилителя используется эмиттерный повторитель на комплементарных транзисторах, обеспечивающий передачу сигналов как положительной, так и отрицательной полярности. В современных ОУ К 0 достигает величины порядка 1*10 5 и более.

При рассмотрении и анализе схемных решений на основе операционных усилителей и выводе основных соотношений, часто используется понятие идеального операционного усилителя. В идеальном ОУ принято считать:

    операционный усилитель обладает бесконечно большим входным и нулевым выходным сопротивлением;

    входы ОУ симметричны и не потребляют ток;

    напряжение между входами ОУ равно нулю;

    коэффициент усиления по напряжению ОУ стремится к бесконечности, а напряжение на выходе равно нулю при отсутствии входных сигналов.

5.4.2. Амплитудно-частотная характеристика операционного усилителя

Амплитудно-частотная характеристика (АЧХ) ОУ – зависимость коэффициента усиления по напряжению от частоты. Любой многоканальный усилитель на высоких частотах может быть представлен схемой замещения (рис. 5.7), в которой генератор сигнала К 0 U ВХ нагружен на ряд интегрирующихRCцепочек, число которых равно числу каскадов ОУ (RиC- соответственно собственная передаточная проводимость и емкость нагрузки каскада).

Коэффициент передачи по напряжению одной RCцепочки:

где
- круговая частота среза.

Соответственно частота среза
. Модуль АЧХRCцепочки определяется соотношением:

Вид АЧХ для двухкаскадного ОУ в соответствии со схемой замещения представлен на рис. 5.8 (кривая 1), где частота и коэффициент усиления отложены в логарифмическом масштабе. Коэффициент усиления измеряется в децибелах (1 дБ = 20lgK). Изменяя частоту в десять раз (на декаду), получаем уменьшение коэффициента усиления так же в десять раз (падение усиления на 20 дБ). Как видно из рисунка, на низких частотахК асимптотически приближается к величине коэффициента усиления без обратной связиК 0 . С ростом частоты за частотой срезаf ср1 , на которойК снижается до значения0,707 К 0 (на 3 дБ), скорость высокочастотного спада равномерна и составляет 20 дБ / дек. В многокаскадном усилителе каждый каскад имеет собственную передаточную проводимость и емкость нагрузки, поэтому на частотеf ср2 для второго каскада скорость высокочастотного спада будет составлять уже 40 дБ / дек. Современные операционные усилители имеют скорректированную АЧХ , которая для ОУ без обратной связи имеет вид кривой 2. Сростом частоты усиление падает и график пересекает линию ноль децибел на частотеединичного усиления f t . Эта частота определяет активную полосу частот ОУ, в которой коэффициент усиленияК≥ 1 . Произведение частоты входного сигнала на коэффициент усиления без обратной связиК равно полосе единичного усиленияf t = К f ВХ . Для исключения амплитудно-фазовых искажений в заданной полосе частот необходимо в этой полосе обеспечить равномерность амплитудной характеристики. Это достигается введением в ОУ отрицательной обратной связи (ООС). При увеличении глубины ООС (уменьшении коэффициента усиления ОУ) расширяется полоса частот равномерной амплитудной характеристики (кривая 3). Диапазон частот от нуля до верхней предельной частотыf b носит название полосы пропускания на малом сигнале, которая связана с полосой единичного усиления ОУ с ООС соотношениемf b = f t К ОС , гдеК ОС - коэффициент усиления с обратной связью.

5.4.3. Схемы включения операционных усилителей

Число схем на ОУ непрерывно увеличивается по мере развития элементной базы и появления новых ОУ, поэтому особенно важным является знание принципов построения и анализа так называемых типовых (базовых) схем включения ОУ. Существует три базовые схемы включения операционных усилителей:

Инвертирующее включение ОУ;

Неинвертирующее включение ОУ;

Дифференциальное включение ОУ.

Эти схемы являются основой для построения других схем на операционных усилителях и расчета их параметров. При анализе базовых схем и упрощении расчета их параметров часто используется понятие идеального операционного усилителя. Рассмотрим базовые схемы включения ОУ.

5.5.3.1. Инвертирующее включение ОУ

Эквивалентная схема инвертирующего включения ОУ приведена на рис. 5.9. В этой схеме входной сигнал и сигнал обратной связи поступают на инверсный вход ОУ. Введение ООС приводит к тому, что теперь схема обладает коэффициентом усиления с обратной связью К ОС . Определим значениеК ОС исходя из свойств идеального ОУ.

Считаем напряжение между входами равным нулю. Тогда потенциал неинверсного входа и потенциал инверсного входа, а следовательно и потенциал точки А (точка суммирования токов) также равен нулю. При условии, что входное сопротивление ОУ R ВХ достаточно велико, можно считать, что ток от источника сигналаi C = U C / R 1 протекает только по резистору обратной связиR ОС , создавая на нем падение напряжения:

Падение напряжения на резисторе R ОС с большой точностью равно напряжению выходаU ВЫХ, так как потенциал левого выхода резистораR ОС (точка А) равен нулю (искусственный нуль-потенциал схемы). Следовательно, можно записать:

.

Коэффициент усиления по напряжению с обратной связью:

Знак минус в выражении (4.4) показывает, что напряжение на выходе ОУ находится в противофазе с входным напряжением. В реальном ОУ с учетом ограниченного значения коэффициента усиления К 0 выражение дляК ОС имеет вид:

. (5.5)

Входное сопротивление при инвертирующем включении ОУ можно считать приближенно R ВХ R 1. Выходное сопротивление

где R ВЫХ.0 - выходное сопротивление ОУ без обратной связи.

Примечание . СопротивлениеR C в этой схеме и далее служит для уменьшения токов смещенияI CM в схемах на операционных усилителях.

5.4.3.2. Неинвертирующее включение ОУ

Эквивалентная схема неинвертирующего включения ОУ приведена на рис. 5.10.

В этой схеме напряжение обратной связи создается делителем R 1 – R ОС :

Считая, что напряжение между входами ОУ близко к нулю, можно записать, что U OC =U C , откуда коэффициент усиления по напряжению:

Входное сопротивление при неинвертирующем включении ОУ велико и определяется приближенно соотношением:

Выходное сопротивление гдеβ =R 1/ R OC .

5.4.3.3. Дифференциальное включение ОУ

Эквивалентная схема дифференциального включения ОУ приведена на рис. 5.11. Она представляет собой сочетание инвертирующей и неинвертирующей схем включения и дает возможность получить разность двух входных сигналов с заданным коэффициентом усиления.

Для получения коэффициента усиления по напряжению данной схемы по-прежнему считаем, что разность напряжений на входах ОУ равна нулю, а токи сигналов не ответвляются на его входы. Составим систему уравнений для напряжений на инверсном и неинверсном входах:

- инверсный вход:

, откуда напряжение на инверсном входе; (5.8)

- неинверсный вход:

Учитывая, что для идеального ОУ напряжение между входами равно нулю
, решая совместно (9.7) и (9.8) получим выражение для

выходного напряжения:

где n = R OC / R ВХ = nR / R – коэффициент усиления усилителя с обратной связью. Если сопротивления в схеме отличаются, тогда выходное напряжение может быть определено:

5.4.3.4. Сумматор

По аналогии со схемами включения ОУ различают инвертирующий и неинвертирующий сумматоры. Схема инвертирующего сумматора приведена на рис. 5.12. Исходя из принципа суперпозиции, напряжение на выходе инвертирующего сумматора может быть определено соотношением:

, где K OC i = R OC / R i – коэффициент передачиi– го входного сигнала по инвертирующему входу. В схеме неинвертирующего сумматора входные напряжения подаются на неинверсный вход, а все резисторы, за исключением сопротивления обратной связи R OC , делают одинаковыми. Напряжение на выходе такого сумматора определяется соотношением:

5.4.3.5. Компараторы

Компаратор (от английского Compare) – это устройство, сравнивающее напряжение сигнала на одном из входов с опорным напряжением на другом входе. При использовании в качестве компаратора ОУ, на его выходе будет устанавливаться положительное или отрицательное напряжение насыщения± U нас . Обычно в ОУ напряжение насыщения и напряжение питания связаны соотношением:± U нас = ± 0,9 U пит . Компараторы применяют во многих устройствах и схемах, например:

В триггере Шмитта или схеме, преобразующей сигнал произвольной формы в прямоугольный или импульсный сигнал;

В детекторе нуля – схеме, индицирующей момент и направление прохождения входного сигнала через 0 В;

В детекторе уровня - схеме, индицирующей момент достижения входным напряжением данного уровня опорного напряжения,

В генераторе сигналов треугольной или прямоугольной формы и т.п.

Отличительной особенностью компараторов является отсутствие ООС, т.е. коэффициент усиления по напряжению определяется собственным коэффициентом усиления К 0 ОУ.

На рис. 5.13. изображена схема компаратора, чувствительная к напряжению на входе (−). В этой схеме входной сигнал подается на инверсный вход, а неинверсный вход служит для задания опорного напряжения U оп . Поскольку в схеме компаратора задействованы оба входа, то для анализа его работы и поведения выходного напряжения следует использо-

вать третью базовую схему включения – дифференциальное включение ОУ и соотношение (5.10).

В случае когда U оп = 0 , схема компаратора работает как детектор нуля (рис.5.13.б). В том случае, когдаU ВХ положительно (в течение первого полупериода),U ВЫХ равняется −U НАС , поскольку потенциал входа (+) меньше потенциала входа (−) (см. рис. 5.13. б). Во второй полупериод, когда U ВХ отрицательно,U ВЫХ будет равно +U НАС , так как потенциал входа (+) больше потенциала входа (−). Таким образом,U ВЫХ показывает, когдаU ВХ положительно или отрицательно по отношению к нулевому опорному напряжению.

Когда U оп > 0 схема компаратора работает как детектор уровня (рис. 5.13. в). На интервалеM–NU ВЫХ равно −U НАС , поскольку потенциал входа (+) меньше потенциала входа (−) (U оп < U ВХ ). При U ВХ < U оп (интервалN–K)U ВЫХ равно +U НАС .

Если поменять местами входы подачи входного напряжения и формирования опорного, то можно получить схему компаратора, чувствительную к напряжению на входе (+).

На практике в некоторых случаях напряжение входа может колебаться относительно опорного уровня. Такие колебания более чем вероятны из-за неизбежных наводок на провода, подходящие к входным зажимам ОУ (напряжение шумов). В этом случае напряжение U ВЫХ будет колебаться от одного уровня насыщения к другому, что может приводить к ложным срабатываниям устройств сигнализации, измерения или исполнительных механизмов. С целью предотвращения реакции выходного напряжения на ложные пересечения опорного уровня, в компараторы вводят положительную обратную связь (ПОС). Такие компараторы носят название компараторы с ПОС или регенеративные компараторы, триггеры Шмитта. ПОС осуществляется путем подачи на неинверсный вход некоторой части выходного напряженияU ВЫХ с помощью резистивного делителяR3 -R4 (рис. 5.14). Напряжение, формируемое резистивным делителем, будет иметь различные значения, поскольку оно зависит от знакаU ВЫХ . Ононазывается верхним или нижним пороговым напряжением и в компараторах с ПОС устанавливается автоматически:

. (5.12)

Положительная обратная связь создает эффект спускового механизма, ускоряя переключение U ВЫХ из одного состояния в другое. Как только

U ВЫХ начинает изменяться, возникает регенеративная обратная связь, заставляющаяU ВЫХ изменяться ещё быстрее. В момент времени равный нулю (рис. 5.14. а, б),U ВХ отрицательно, поэтому выходное напряжение равно +U НАС и на неинверсном входе будет установлен порогU П.В. . В момент времениt 1 напряжение U ВХ > + U НАС и компаратор переключается по выходу в напряжение −U НАС . При этом на неинверсном входе установится порогU П.Н. . Очередное переключение компаратора произойдет в момент t 2 , когдаU ВХ станет более отрицательным чем напряжение −U НАС . Если пороговые напряжения превышают по величине амплитуду шумов, то ПОС не допустит ложных срабатываний на выходе (рис. 5.14. а, б). Диапазон напряжений −U НАС U ≤ + U НАС носит название «Гистерезис» или «Зона нечувствительности».

Лекция 6. Генераторы гармонических колебаний. Ключевой режим работы транзисторов. Генераторы прямоугольных импульсов.

6.1. Генераторы гармонических колебаний

Генераторы гармонических колебаний – это устройства, преобразующие эергию постоянного тока в энергию электромагнитных колебаний синусоидальной формы требуемой частоты и мощности. По способу возбуждения они подразделяются на генераторы с независимым возбуждением и с самовозбуждением (автогенераторы).

Структурная схема автогенератора приведена на рис. 6.1. Она представляет усилитель, охваченный положительной обратной связью. Здесь Ќ - комплексное значение коэффициента усиления по напряжению усилителя,έ - комплексное значение коэффициента передачи четырехполюсника обратной связи (ЧОС). В качестве ЧОС используют частотно-зависимые звенья:LC- контуры в высокочастотных автогенераторах иRC-контуры в низкочастотных.

В усилителе, охваченном обратной связью, справедливы соотношения:

Ů вх = έ Ů вых, Ů вых = Ќ Ů вх, откуда можно записать выражение для выходного сигнала:

Ů вых =Ќ έ Ů вых. (6.1)

Выражение (6.1) справедливо при условии Ќ έ = 1. (6.2)

Выполнение условия (6.2) обеспечивает в автогенераторе незатухающие колебания. С учетом модулей коэффициента усиления и коэффициента передачи обратной связи и их фазовых сдвигов можно записать:

Ќ │е jφ │ έ │е jψ =Kе jφ εе jψ =1. (6.3)

Равенство(6.3) должно выполняться при соблюдении двух условий:

φ + ψ = 2π n(n= 0, 1, 2, 3….) (6.4),

Условие (6.4) носит название «условие баланса фаз» и означает, что в системе действует положительная обратная связь (ПОС).

Условие (6.5) носит название «условие баланса амплитуд» и означает, что потери энергии в автогенераторе восполняются энергией от источника питания по цепи ПОС.

Появившиеся по какой либо причине на входе усилителя слабые колебания усиливаются в «К» раз и ослабляются в «ε» раз цепью ОС. Попадая вновь на вход усилителя в той же фазе, но с большей амплитудой. Далее процесс повторяется, пока на выходе не установятся колебания с постоянной амплитудой (Kε= 1).

6.2.1. RC-автогенераторы гармонических колебаний

На рис. 6.2 приведены схемы RC-автогенераторов гармонических колебаний.

RC-автогенераторы содержат активный элемент (усилитель ОЭ) и трехзвенную RC–цепочку дифференцирующего (см. рис. 6.2,а) или интегрирующего (см. рис. 6.2,б) типа, включенную в цепь ПОС усилителя. Кроме того, параллельно включенные по переменному току R1 и R2 образуют третье сопротивление трехзвенной RC-цепи дифференцирующего типа: (R1R2) / (R1 =R2) =R

Трехзвенные RC-цепи имеют амплитудно-частотные и фазо-частотные характеристики (АЧХ и ФЧХ), показанные на рис. 6.3. Из графиков АЧХ и ФЧХ видно, что точка перегиба (т. А) характеристик соответствует частоте ω 0 и фазе ψ =180 0 для RC-цепи дифференцирующего типа и ψ = -180 0 для RC-цепи интегрирующего типа. Точка А соответствует квазирезонансу RC-цепи, а частота квазирезонанса ω 0 называется квазирезонансной частотой частотно-избирательной RC-цепи.

Каждая RC–цепочка обеспечивает сдвиг по фазе, равный 60 0 . Суммарный сдвиг трехзвенной RC–цепочки равен 180 0 . Дифференцирующая цепочка сдвигает фазу колебаний в сторону отставания, а интегрирующая - в сторону опережения.

Сам усилитель с ОЭ сдвигает выходной сигнал на 180 0 и трехзвенная RC–цепочка – тоже на 180 0 . Таким образом, на вход усилителя подается сигналв фазе с выходным сигналом за счет ПОС. Этим обеспечивается условие баланса фаз.

Основные расчетные соотношения:

а) для генератора с RC–цепочкой дифференцирующего типа:


б) для генератора с RC–цепочкой интегрирующего типа:


6.2.2. RC-автогенераторы на операционном усилителе

А). RC-автогенераторы с поворотом фазы в цепи обратной связи

В RC-генераторах, изображенных на рис. 6.4, трехзвенная фазовращательная RC-цепь дифференцирующего или интегрирующего типа включена между инвертирующим входом и выходом ОУ. Резистор R, включенный в цепь ООС (см. рис. 6.4,а), выполняет две функции: элемента звена RC-цепи и элемента в цепи ООС для повышения стабильности. Аналогичную задачу выполняет конденсатор С в схеме генератора на рис. 6.4,б. На частоте квазирезонанса ω 0 трехзвенные RC-цепочки сдвигают фазу на ±π, и инвертирующий ОУ сдвигает фазу на π.

Основные расчетные соотношения те же, что и в транзисторных RC-автогенераторах

Б). RC-автогенератор без поворота фазы в цепи обратной связи

В этом генераторе, представленном на рис. 6.5, использована ПОС на вход ОУ через мост Вина. Мост Вина состоит из последовательного и параллельного RC-звеньев, которые имеют наибольший коэффициент передачи на квазирезонансной частоте ω 0 (см. рис. 6.5,б). При этом фазовый сдвиг равен 0 (см. рис. 6.5,в). Для обеспечения баланса

фаз выход моста Вина связан с неинвертирующим входом ОУ. Элементы ООС R1, R2 повышают стабильность генератора. Переменный резистор R1 изменяет глубину ООС.

Основные расчетные соотношения для данной схемы:

f G = 1/ 2πRC;ε 0 = 1/3; С = 1 / 2πRf.

6.3. Ключевой режим работы транзистора

Схема электронного ключа на биполярном транзисторе приведена на рис. 6.6. Транзисторный ключ по схеме с общим эмиттером в статическом режиме имеет два стационарных состояния. Транзистор заперт и рабочая точка «В» находится в области отсечки –

области II, ограниченной сверху ВАХ, соответствующей I б = - I к0 . Оба p-n-перехода закрыты. Ток в транзисторе отсутствует, потенциал коллектора (U КЭ отс) близок к величине Е к. Условие отсечки транзистораU ВХ =U БЭ ≤ 0.

Транзистор открыт и рабочая точка «А» находится в области насыщения – области I, ограниченной справа линией, из которой выходят статические ВАХ. Оба p-n-перехода транзистора открыты. Через транзистор течет максимальный ток – коллекторный ток насыщения I к нас. Напряжение на коллекторе близко к нулю. Условие насыщения транзистораU ВХ =U БЭ > 0,U КЭ > 0.

Для расчета танзисторных ключей часто используют токовый критерий условия насыщения:

I Б ≥I К Н /β =I Б Н, гдеI Б Н иI К Н – ток базы и ток коллектора на границе насыщения.

В режиме насыщения транзистор можно рассматривать как эквипотенциальную точку – точку с единым потенциалом всех электродов. В этом случае ток коллектора в режиме насыщения можно определить как I К Н ≈ Е К /R K , ток базыI Б Н ≈I К Н / β ≈ Е К /βR K . Тогда при заданном значении входного напряжения сопротивление в базовой цепи:

R Б =U ВХ /I Б Н = (U ВХ βR K) / Е К. (6.6)

6.4. Параметры одиночного прямоугольного импульса и импульсной последовательности

Рассмотрим основные параметры одиночного импульса. Реальный одиночный импульс напряжения прямоугольной формы, формируемый ключевым полупроводниковым устройством, показан на рис. 6.7.

Параметрами импульса являются: амплитуда U m , длительностьt и, определяемая на уровне 0,1U m или на уровне, соответствующем половине амплитуды (активная длительность), длительности переднего фронтаt ф, длительность срезаt с (заднего фронта) и спад вершины импульса ∆U.

Параметрами последовательности импульсов (рис. 6.8) являются: амплитуда импульса U m , период повторения Т, частота повторения

f= 1 /T, длительность импульсаt и, длительность паузы импульсаt п, коэффициент заполнения γ =t и /Tи величина, обратная коэффициенту заполнения, называемая скважностью q = 1/ γ =T/t и.

6.5. Генераторы прямоугольных импульсов (мультивибраторы)

Для генерирования периодической последовательности импульсов напряжения прямоугольной формы с требуемыми параметрами используются генераторы, называемые мультивибраторами. Мультивибраторы относятся к классу устройств импульсной техники, предназначенных. Как и в любых генерирующих устройствах, предназначенных для формирования импульсов, в их схеме ключевой элемент (транзистор, операционный усилитель) охватывается положительной обратной связью при помощи RC-цепей, обеспечивающих релаксационный процесс. Релаксационные устройства работают в двух режимах: автоколебательном и ждущем. В ждущем режиме на каждый входной сигнал формируется один выходной импульс или пачка таких импульсов. В автоколебательном режиме генераторы формируют непрерывную последовательность импульсов. Такие генераторы применяются в цифровой технике в качестве задающих генераторов и делителей частоты.

Существует большое разнообразие методов построения схем мультивибраторов. Наибольшее распространение получили схемы мультивибраторов на операционных усилителях (ОУ). Возможность создания мультивибратора на ОУ основывается на использовании ОУ в качестве порогового элемента (компаратора). Схема симметричного мультивибратора на ОУ (t И1 =t И2) приведена на рис. 6.9 . Рассмотрим работу мультивибратора с учетом временной диаграммы его работы (рис. 6.10).

Допустим, что до момента времени t1 напряжение между входами ОУu Д > 0. Это определяет напряжение на выходеu ВЫХ =U − НАС и на его неинверсном входеu + = − γU − НАС, где γ =R3 /(R3 +R5) - коэффициент передачи цепи положительной обратной связи. Наличие на выходе напряжения −U НАС обуславливает процесс заряда конденсатора С2 через резисторR4 с полярностью, указанной на рис. 6.9 без скобок. В момент времениt1 экспоненциально изменяющееся напряжение на инверсном входе ОУ (рис. 6.10., в) достигает напряжения на инверсном входе − γU − НАС. Напряжение между входами ОУu Д становится равным нулю, что вызывает изменение полярности напряжения на выходе:u ВЫХ =U + НАС (рис. 6.10, а). Напряжение на неинверсном входеu + изменяет знак и становится равным γU + НАС (рис. 6.10, б), что соответствует напряжению между входами ОУu Д < 0 иu ВЫХ =U + НАС. С момента времениt 1 начинается перезаряд конденсатора от уровня

− γ U − НАС.

Конденсатор стремится перезарядиться в цепи с резистором R4 до уровняU + НАС с полярностью напряжения, указанной в скобках (рис. 6.9). В момент времениt2 напряжение на конденсаторе достигает значения γU + НАС. Напряжениеu Д становится равным нулю. Это вызывает переключение ОУ в противоположное состояние (рис. 6.10, а – в). Далее процессы в схеме протекают аналогично.

Период следования импульсов симметричного мультивибратора

Т = t И1 +t И2 = 2t И. (6.7)

Частота следования импульсов

f= 1 /T= 1 / 2t И. (6.8)

Время t И можно определить по длительности интервалаt И1 (рис. 6.10, а), который характеризует перезаряд конденсатора С2 в цепи с резисторомR4 и напряжениемU + НАС от уровня − γU − НАС до γU + НАС (рис. 6.10, в).

Процесс перезаряда описывается известным соотношением:

где
,
,
.

Если в выражении (6.10) положить
, можно определить времяt И :

. (6.11)

Считая, что для ОУ
, соотношения (6.11), (6.7) и (6.8) можно привести к виду:

. (6.14)

Внесимметричном мультивибратореt И1 ≠t И2 . Для этого необходимо, чтобы постоянные времени времязадающих цепей мультивибратора по полупериодам были неодинаковые. Это достигается включением в цепь обратной связи вместо резистораR4 двух параллельных ветвей, состоящих из резистора и диода (рис. 6.11).

Диод VD2 открыт при положительной полярности выходного напряжения, а диодVD1 – при отрицательной. Поэтому в первом случае τ 1 = С2R ״ 4, а во втором τ 2 = С2R ׳ 4. Длительности импульсов t И1 иt И2 несимметричного мультивибратора рассчитывают по соотношению (6.11), а частоту по формулеf= 1/T= 1/ (t И1 +t И2).

Для определения энергетических свойств импульсных устройств и энергетического воздействия импульса на нагрузку, вводят понятие среднего значения импульса за период (постоянной составляющей импульса). Для прямоугольной последовательности импульсов при активной нагрузке среднее значение напряжения и тока за период определяется соотношениями:


,
.

Действующее значение напряжения и тока за период определяется соотношениями:

,

6.6. Силовые транзисторные ключи MOSFET и IGBT

Предназначены для коммутации больших токов (MOSFET– десятки ампер,IGBТ -

сотни и тысячи ампер) при рабочих напряжениях в сотни вольт. Используются в различных типах преобразователях напряжения (DC–DC,DC–AC), преобразователях частоты для управления электроприводом и т.д.

Принцип действия MOSFET примерно такой же, как и у маломощных полевых транзисторов с изолированным затвором с индуцированным каналом проводимости. На рис 6.12. показана вертикальная структураn-канальногоMOSFET. Такая структура выполняется методом двойной диффузии, которая состоит в следующем: на подложкеn + - типа с введенным эпитаксиальным слоем проводят первую диффузию (бор – примесь р –типа). Далее диффузией донорной примеси (фосфор) создают исток с высокой концентрацией носителейn + - типа. Контакт стока расположен внизу. Такая структура позволяет создать максимальную площадь контактов стока и истока в целях снижения сопротивления выводов. Поликремниевый электрод затвора изолирован от металла истока слоем

SiO 2 . Канал в мощном транзисторе формируется на поверхности р-областей снизу от оксида затвора, причем р-области соединены с истоком.

Слаболегированная область n – - типа (ее часто называют областью дрейфа) позволяет прибору выдерживать высокое напряжение при его выключении.

Так как MOSFET– это транзистор, работающий на основных носителях заряда, в нем не накапливаются избыточные носители, которые определяют динамику биполярного транзистора. Динамика определяется только окисным слоем затвора, а также двумя емкостями: входной затвор-исток С ЗИ и выходной сток-исток С СИ.

Современные преобразовательные устройства требуют открывать и запирать транзистор с высокой частотой – сотни кГц и даже единицы МГц. Сопротивление между затвором и истоком у MOSFETсоставляет десятки мегаом, однако оно шунтирукется входной емкостью С ЗИ, которая заметно влияет на построение схемы управления транзистором. При высокой скорости переключения транзистора емкость С ЗИ сильно нагружает схему его управления.MOSFETимеет характеристику, называемую характеристикой прямой передачи (рис. 6.13).

Ток стока равен нулю до напряжения, называемого пороговым (U пор), а затем нарастает при увеличении напряжения (U зи). Изготовители определяютU пор как напряжение, при котором ток стока достигает определенной величины, например 1 мА. Для достижения тока стокаI с 1 необходимо зарядить емкость до напряженияU зи1. То есть, время заряда входной емкости, а следовательно и время включения транзистора, будет определяться током, формируемым схемой управления.

Проведем расчет требуемого тока от схемы управления при переключении MOSFET. Пусть С ЗИ = 4 нФ,U зи 1 = 12 В, а время заряда входной емкости должно составлять 40 нс.

Из известного соотношения для емкости

i c =C(du c /dt)

определим: I з =C зи U зи 1 /t вкл = 4 ·10 -9 ·12 / 40 ·10 -9 = 1,2A.

Таким образом, для переключения MOSFETза заданное время, логическая схема управления должна обеспечивать значительный ток. В современной технике для управления мощнымиMOSFETприменяют специализированные контроллеры (драйверы), которые могут непосредственно подавать напряжение на затвор с амплитудой порядка 12 -15 В и током в импульсе 1,5 -3 А, обеспечивая большой ток заряда входной емкости.

IGBT (IsolatedGateBipolarTransistor) – биполярный транзистор с изолированным затвором. Находят применение во многих высоковольтных и высокоамперных применениях: приводы, инверторы, устройства бесперебойного питания и т.д. Вертикальная структураIGBTприведена на рис 6.14, а. В биполярном транзисторе с изолированным затвором соединены в одном кристалле по схеме составного мощный биполярный транзистор р-n-pструктуры и управляющийMOSFET. Основой структуры является сильно легированный кремний р-типа. Между базой и коллектором биполярного транзистора (БТ) подключаетсяMOSFET. На самом деле в структуреIGBTможно выделить два БТ:VT2 – со структурой р + -n - - р - иVT1 – со структуройn + - р - -n - (рис. 6.15). Работой этих транзисторов и управляетMOSFET. Для схемы рис. 6.15. справедливы соотношения:

i k 2 =β 2 i э2 ;i k 1 =β 1 i э1 ;i э =i k 1 +i k 2 +i c .

То есть, ток стока полевого транзистора i c =i э (1 – β 1 – β 2) или через крутизнуS= ∂I c / ∂U зи

Ток силовой части IGBT:

i k ≈i э = (SU ЗЭ) / (1 – β 1 – β 2) =S ЭКВ U ЗИ, гдеS ЭКВ =S/ (1 – β 1 – β 2) – эквивалентная крутизнаIGBT. При β 1 + β 2 = 1S ЭКВ IGBTзначительно превышает крутизнуSMOSFET.

Быстродействие IGBTзначительно меньше быстродействияMOSFET(десятки килогерц). Время включенияIGBTпримерно такое же, как аналогичный параметр БТ (приблизительно 80 нс), а время выключения намного больше. Это определяется тем, что вIGBTнет возможности ускорить процесс выключения созданием отрицательного базового тока (в его базовую цепь включенMOSFET, который закрывается значительно быстрее). На

рис 6.16. показан процесс выключения IGBTпри активно-индуктивном характере нагрузки. В начале коллекторный ток снижается быстро, а затем медленно тянется к нулю. Начальный этап соответствует той части тока устройства, которая идет черезMOSFET. Тянущаяся хвостовая часть (токовый хвост), фактически является током БТ при оборванной базе

При получении частотных характеристик ОУ следует использовать модель, учитывающую изменение его параметров при увеличении частоты. Для ОУ с типовыми характеристиками мы предлагаем модель, представленную на рис. 5.8. Исследуем модель, которая включает R in =1 Мом; R 0 =50 Ом; R i1 =1 кОм; С= 15,92 мкФ и EG с коэффициентом усиления по напряжению A 0 =100000. Последний параметр представляет собой низкочастотный коэффициент усиления или коэффициент усиления по постоянному току при разомкнутой обратной связи. При использовании этих значений, получим выходное напряжение на частоте f c = 10 Гц, при которой выходное напряжение снижается на 3 дБ.

Рис. 5.8. Модель ОУ при частоте 10 Гц

Чтобы проверить расчет, нам необходимо получить коэффициент усиления при разомкнутой обратной связи. Это означает, что резистор обратной связи R 2 должен быть удален из схемы, но так как узел 5 должен иметь два элемента, связанных с ним, включим между узлом 5 и «землей» типовой резистор нагрузки R L =22 кОм (см. рис. 5.9):

Op Amp Model with 3-Frequency at 10 Hz for Open-Loop Gain

AC DEC 4 0 1 1MEG

Рис. 5.9. Использование модели на рис. 5.8 для получения АЧХ усилителя с обратной связью

Выполните моделирование и получите в Probe график частотной характеристики выходного напряжения V(5), показанный на рис. 5.10. Как и было предсказано, выходное напряжение падает от v 0 =100 В при f =1 Гц до v 0 =70 В при f =10 Гц, частоте, при которой коэффициент усиления падает на 3 дБ. Она представляется символом f c . Выходное напряжение около 100 В соответствует коэффициенту усиления при разомкнутой обратной связи A 0 =100000.

Рис. 5.10. АЧХ усилителя без обратной связи

Рис. 5.11. Характеристика Боде для схемы на рис. 5.9

Для анализа другой особенности модели ОУ, удалите график V(5) и постройте график зависимости

20·lg(V(5)/V(2)).

Из этого графика (рис. 5.11) ясно видно, что спад частотной характеристики составляет 20 дБ/дек. Возвратитесь входному файлу и добавьте следующую строку для введения в схему резистора R 2:

При этом получается практическая схема с выходным напряжением, ограниченным приемлемым значением. В Probe получается график v 0 со среднечастотным значением, близким к 25 мВ. Получите график Боде для отношения выходного напряжения к входному, как вы уже делали для схемы без обратной связи. Результаты показаны на рис. 5.12.

Рис. 5.12. График Боде для усилителя с обратной связью

Убедитесь, что коэффициент усиления на средних частотах равен А mid =27,96 дБ и снижается на 3 дБ при f =39,3 кГц. Чтобы проверить правильность этих значений, вспомните, что коэффициент усиления равен единице при частоте f t = A 0 · f c . В модели задано типичное значение частоты f t = 1 МГц. При этом также принимается, что f с =10 Гц, что дает A 0 =1Е5. Значение f c установлено при R i1 =1 кОм и С= 15,92 мкФ.

Обратите внимание, что ширина полосы частот при замкнутой обратной связи CLBW=f t ОІ, а

В нашем примере ОІ=10/250=0,04 и f t ОІ=40 кГц. Это приближенное значение находится в хорошем согласии с нашей моделью, которая дала f =39,33 кГц для частоты, при которой происходит снижение на 3 дБ. В качестве дальнейшего исследования модели измените значение резистора обратной связи на R 2 =15 кОм, и снова проведите анализ. Убедитесь, что значение А mid =7,959 дБ и f 3дБ =393,6 кГц. А какое значение для f 3дБ даст использование приближенной формулы и нового значения ОІ?

Одной из важных характеристик усилителей являются амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ), представляющие собой зависимость амплитуды (коэффициента усиления) от частоты и угла рассогласования фаз входного и выходного сигналов от частоты соответственно. В ряде случаев коэффициенты усиления выражают в логарифмических единицах – децибелах (дБ):

Тогда зависимость коэффициента усиления от частоты называют ЛАЧХ (логарифмической амплитудно-частотной характеристикой).

Для оценки частотного диапазона усилителя измеряют его АЧХ и определяют верхнюю граничную частоту по уровню 0,707 от максимального выходного сигнала. Что соответствует снижению коэффициента на 3 дБ

Рис.1 ЛАЧХ ОУ

Реальные ОУ имеют высокий коэффициент усиления, логарифмическая амплитудно-частотная характеристика ОУ без цепей внешней обратной связи имеет вид, как показано на (рис.1). Обычно в справочниках указывают частоту, на которой коэффициент усилия равен 1 – частота единичного усилия ƒ ед – которая обычно составляет 1 – 1000 МГц.

Для анализа работы схем, основанных на ОУ, воспользуемся основными свойствами идеального ОУ:

1. Разность потенциалов между инвертирующим и неинвертирующим входами равна нулю (U см = 0);

2. Входные токи смещения равны нулю (I + вх = I - вх = 0)

Коэффициент усиления таких схем есть отношение входного напряжения к выходному:

АМПЛИТУДНАЯ ХАРАКТЕРИСТИКА

Наклон Амплитудной характеристики подчеркивает линейность зависимости выходного напряжения от входного. Горизонтальные участки соответствуют режиму работы операционного усилителя, при котором входное напряжение превышает максимальное значение

Есм – напряжение смещения, определяется при Uвых = 0 из-за разброса параметров элементов ОУ от температуры и напряжения источника питания.



Применение ОУ:

ОУ в интегральном исполнении по своим параметрам и характеристикам приближаются к идеальным ОУ.

Само название ОУ связано с известными математическими операциями (суммирования, вычитания, дифференцирования, логарифмирования, интегрирования, сравнения, умножения и т.д.), которые осуществлялись раньше с помощью ОУ.

Современные интегральные ОУ универсальны, помимо выполнения математических функций, они могут являться источниками напряжения, управления U, инвертирующие и неинвертирующие усилителями, ИПТ (источник постоянного тока), гармоническими генераторами и т.п.

5.4.1. Общие сведения об операционных усилителях

В классической электронике операционным усилителем принято называть линейный преобразователь, при помощи которого можно осуществлять различные математические операции – суммирование, вычитание, интегрирование, дифференцирование и др. Это и определило название таких усилителей – операционные (решающие), на основе которых путем введения обратных связей можно проводить математические операции. Интегральные ОУ предназначены не только для выполнения математических операций, но и для осуществления преобразования сигналов (усиления, обработки, формирования сигналов).

Условное графическое изображение и функциональное обозначение ОУ приведено на рис. 5.5.

Современные ОУ строятся по схеме прямого усиления с дифференциальными равноправными по электрическим параметрам входами (инверсный вход «○» или «−» и неинверсный вход – без обозначения или «+») и двухтактным двухполярным (по амплитуде сигнала) выходом. Основным элементом ОУ является входной каскад, построенный по схеме дифференциального усилителя (ДУ), назначение которого – усиление разности сигналов, наблюдаемой между его входами (рис. 5.6,а). ДУ имеет два транзистора VT1 и VT2 с коллекторными нагрузочными резисторами R К. Эмиттерные токи этих транзисторов формируются с помощью генератора стабильного тока (ГСТ) I 0 , выполненного на транзисторах VT3 и VT4. При идентичности параметров транзисторов VT1 и VT2, равенстве коллекторных резисторов и условии, что входные сигналы U − = U + = 0 , разность выходных сигналов ДУ будет равна нулю, поскольку для идеального ДУ эмиттерный ток I 0 делится пополам между транзисторами VT1 и VT2.



Из теории дифференциальных усилителей известно, что в режиме баланса потенциал каждого выхода имеет относительно земли синфазный уровень напряжения: .

Режиму баланса соответствует диаграмма (рис. 5.6, б) до момента времени t1 . При появлении в момент t1 сигнала U − транзистор VT1 получает больший ток смещения и его коллекторный ток I K 1 увеличивается, а ток транзистора VT2 уменьшается, так как

I K 1 + I K 2 = I 0 . Таким образом, с увеличением входного напряжения U − , выходное напряжение на выходе первого транзистора уменьшается (приращение сигнала инвертировано по фазе). На другом выходе ДУ напряжение будет увеличиваться (приращение сигнала не инвертировано по фазе). Полный дифференциальный выходной сигнал между выходами ДУ определяется соотношением:

Изменение выходных сигналов прекращается, когда весь ток I 0 начинает течь через транзистор VT1. В момент времени t2 транзистор VT2 переходит в режим отсечки. Поскольку входное сопротивление ДУ обратно пропорционально величине его рабочего тока I 0 , то этот ток задается обычно небольшим (десятки микроампер), а это в свою очередь определяет низкий коэффициент усиления ДУ:

где - крутизна биполярного транзистора. В связи с этим, в интегральных ОУ используются последующие каскады усиления для получения большой величины коэффициента усиления по напряжению. В общем виде коэффициент усиления по напряжению ОУ равен произведению коэффициентов усиления всех его каскадов: .

Абсолютные значения входных напряжений U − , U + и U ВЫХ ограничены напряжением питания операционного усилителя +U пит и −U пит − (≤ ± 15 В). Типичным свойством передаточной характеристики ОУ является то, что она чувствительна к разности входных напряжений и не зависит от их абсолютных значений. Из этого свойства вытекает введение двух понятий: синфазного входного напряжения U СИНФ для общей составляющей напряжений на обоих их входах, которая должна быть подавлена усилителем, и дифференциального входного напряжения U Д , на которое усилитель реагирует:

, ,

где К = 1/2 или 0.

Для упрощения определения параметров ОУ обычно полагают К = 0, тогда U СИНФ =U + .

Интегральные ОУ обычно состоят из входного дифференциального каскада, каскадов усиления, каскада, преобразующего двухфазный выход дифференциального усилителя в однофазный и каскада для сдвига уровня. На выходе усилителя используется эмиттерный повторитель на комплементарных транзисторах, обеспечивающий передачу сигналов как положительной, так и отрицательной полярности. В современных ОУ К 0 достигает величины порядка 1*10 5 и более.

При рассмотрении и анализе схемных решений на основе операционных усилителей и выводе основных соотношений, часто используется понятие идеального операционного усилителя. В идеальном ОУ принято считать:

· операционный усилитель обладает бесконечно большим входным и нулевым выходным сопротивлением;

· входы ОУ симметричны и не потребляют ток;

· напряжение между входами ОУ равно нулю;

· коэффициент усиления по напряжению ОУ стремится к бесконечности, а напряжение на выходе равно нулю при отсутствии входных сигналов.

5.4.2. Амплитудно-частотная характеристика операционного усилителя



Амплитудно-частотная характеристика (АЧХ) ОУ – зависимость коэффициента усиления по напряжению от частоты. Любой многоканальный усилитель на высоких частотах может быть представлен схемой замещения (рис. 5.7), в которой генератор сигнала К 0 U ВХ нагружен на ряд интегрирующих RC цепочек, число которых равно числу каскадов ОУ (R и C - соответственно собственная передаточная проводимость и емкость нагрузки каскада).

Коэффициент передачи по напряжению одной RC цепочки:

где - круговая частота среза.

Соответственно частота среза . Модуль АЧХ RC цепочки определяется соотношением:



Вид АЧХ для двухкаскадного ОУ в соответствии со схемой замещения представлен на рис. 5.8 (кривая 1), где частота и коэффициент усиления отложены в логарифмическом масштабе. Коэффициент усиления измеряется в децибелах (1 дБ = 20lg K). Изменяя частоту в десять раз (на декаду), получаем уменьшение коэффициента усиления так же в десять раз (падение усиления на 20 дБ). Как видно из рисунка, на низких частотах К асимптотически приближается к величине коэффициента усиления без обратной связи К 0 . С ростом частоты за частотой среза f ср1 , на которой К снижается до значения 0,707 К 0 (на 3 дБ), скорость высокочастотного спада равномерна и составляет 20 дБ / дек. В многокаскадном усилителе каждый каскад имеет собственную передаточную проводимость и емкость нагрузки, поэтому на частоте f ср2 для второго каскада скорость высокочастотного спада будет составлять уже 40 дБ / дек. Современные операционные усилители имеют скорректированную АЧХ , которая для ОУ без обратной связи имеет вид кривой 2. Сростом частоты усиление падает и график пересекает линию ноль децибел на частоте единичного усиления f t . Эта частота определяет активную полосу частот ОУ, в которой коэффициент усиления К≥ 1 . Произведение частоты входного сигнала на коэффициент усиления без обратной связи К равно полосе единичного усиления f t = К f ВХ . Для исключения амплитудно-фазовых искажений в заданной полосе частот необходимо в этой полосе обеспечить равномерность амплитудной характеристики. Это достигается введением в ОУ отрицательной обратной связи (ООС). При увеличении глубины ООС (уменьшении коэффициента усиления ОУ) расширяется полоса частот равномерной амплитудной характеристики (кривая 3). Диапазон частот от нуля до верхней предельной частоты f b носит название полосы пропускания на малом сигнале, которая связана с полосой единичного усиления ОУ с ООС соотношением f b = f t К ОС , где К ОС - коэффициент усиления с обратной связью.

5.4.3. Схемы включения операционных усилителей

Число схем на ОУ непрерывно увеличивается по мере развития элементной базы и появления новых ОУ, поэтому особенно важным является знание принципов построения и анализа так называемых типовых (базовых) схем включения ОУ. Существует три базовые схемы включения операционных усилителей:

Инвертирующее включение ОУ;

Неинвертирующее включение ОУ;

Дифференциальное включение ОУ.

Эти схемы являются основой для построения других схем на операционных усилителях и расчета их параметров. При анализе базовых схем и упрощении расчета их параметров часто используется понятие идеального операционного усилителя. Рассмотрим базовые схемы включения ОУ.

5.5.3.1. Инвертирующее включение ОУ

Эквивалентная схема инвертирующего включения ОУ приведена на рис. 5.9. В этой схеме входной сигнал и сигнал обратной связи поступают на инверсный вход ОУ. Введение ООС приводит к тому, что теперь схема обладает коэффициентом усиления с обратной связью К ОС . Определим значение К ОС исходя из свойств идеального ОУ.

Считаем напряжение между входами равным нулю. Тогда потенциал неинверсного входа и потенциал инверсного входа, а следовательно и потенциал точки А (точка суммирования токов) также равен нулю. При условии, что входное сопротивление ОУ R ВХ достаточно велико, можно считать, что ток от источника сигнала i C = U C / R1 протекает только по резистору обратной связи R ОС , создавая на нем падение напряжения:

Падение напряжения на резисторе R ОС с большой точностью равно напряжению выхода U ВЫХ, так как потенциал левого выхода резистора R ОС (точка А) равен нулю (искусственный нуль-потенциал схемы). Следовательно, можно записать:

Коэффициент усиления по напряжению с обратной связью:

Знак минус в выражении (4.4) показывает, что напряжение на выходе ОУ находится в противофазе с входным напряжением. В реальном ОУ с учетом ограниченного значения коэффициента усиления К 0 выражение для К ОС имеет вид:

. (5.5)

Входное сопротивление при инвертирующем включении ОУ можно считать приближенно R ВХ ≈ R1. Выходное сопротивление

где R ВЫХ.0 - выходное сопротивление ОУ без обратной связи.

Примечание . Сопротивление R C в этой схеме и далее служит для уменьшения токов смещения I CM в схемах на операционных усилителях.

5.4.3.2. Неинвертирующее включение ОУ

Эквивалентная схема неинвертирующего включения ОУ приведена на рис. 5.10.

В этой схеме напряжение обратной связи создается делителем R1 – R ОС :

Считая, что напряжение между входами ОУ близко к нулю, можно записать, что U OC = U C , откуда коэффициент усиления по напряжению:

Входное сопротивление при неинвертирующем включении ОУ велико и определяется приближенно соотношением:

Выходное сопротивление где β =R1/R OC .

5.4.3.3. Дифференциальное включение ОУ

Эквивалентная схема дифференциального включения ОУ приведена на рис. 5.11. Она представляет собой сочетание инвертирующей и неинвертирующей схем включения и дает возможность получить разность двух входных сигналов с заданным коэффициентом усиления.

Для
получения коэффициента усиления по напряжению данной схемы по-прежнему считаем, что разность напряжений на входах ОУ равна нулю, а токи сигналов не ответвляются на его входы. Составим систему уравнений для напряжений на инверсном и неинверсном входах:

- инверсный вход:


, откуда напряжение на инверсном входе ; (5.8)

- неинверсный вход:

Учитывая, что для идеального ОУ напряжение между входами равно нулю , решая совместно (9.7) и (9.8) получим выражение для

выходного напряжения:

где n =R OC /R ВХ = nR/R – коэффициент усиления усилителя с обратной связью. Если сопротивления в схеме отличаются, тогда выходное напряжение может быть определено:

5.4.3.4. Сумматор



По аналогии со схемами включения ОУ различают инвертирующий и неинвертирующий сумматоры. Схема инвертирующего сумматора приведена на рис. 5.12. Исходя из принципа суперпозиции, напряжение на выходе инвертирующего сумматора может быть определено соотношением:

, где K OC i =R OC /R i – коэффициент передачи i – го входного сигнала по инвертирующему входу. В схеме неинвертирующего сумматора входные напряжения подаются на неинверсный вход, а все резисторы, за исключением сопротивления обратной связи R OC , делают одинаковыми. Напряжение на выходе такого сумматора определяется соотношением:

5.4.3.5. Компараторы

Компаратор (от английского Compare) – это устройство, сравнивающее напряжение сигнала на одном из входов с опорным напряжением на другом входе. При использовании в качестве компаратора ОУ, на его выходе будет устанавливаться положительное или отрицательное напряжение насыщения ±U нас . Обычно в ОУ напряжение насыщения и напряжение питания связаны соотношением: ±U нас = ± 0,9 U пит. Компараторы применяют во многих устройствах и схемах, например:

В триггере Шмитта или схеме, преобразующей сигнал произвольной формы в прямоугольный или импульсный сигнал;

В детекторе нуля – схеме, индицирующей момент и направление прохождения входного сигнала через 0 В;

В детекторе уровня - схеме, индицирующей момент достижения входным напряжением данного уровня опорного напряжения,

В генераторе сигналов треугольной или прямоугольной формы и т.п.

Отличительной особенностью компараторов является отсутствие ООС, т.е. коэффициент усиления по напряжению определяется собственным коэффициентом усиления К 0 ОУ.

На рис. 5.13. изображена схема компаратора, чувствительная к напряжению на входе (−). В этой схеме входной сигнал подается на инверсный вход, а неинверсный вход служит для задания опорного напряжения U оп . Поскольку в схеме компаратора задействованы оба входа, то для анализа его работы и поведения выходного напряжения следует использо-


вать третью базовую схему включения – дифференциальное включение ОУ и соотношение (5.10).

В случае когда U оп = 0 , схема компаратора работает как детектор нуля (рис.5.13.б). В том случае, когда U ВХ положительно (в течение первого полупериода), U ВЫХ равняется − U НАС , поскольку потенциал входа (+) меньше потенциала входа (−) (см. рис. 5.13. б). Во второй полупериод, когда U ВХ отрицательно, U ВЫХ будетравно +U НАС , так как потенциал входа (+) больше потенциала входа (−). Таким образом, U ВЫХ показывает, когда U ВХ положительно или отрицательно по отношению к нулевому опорному напряжению.

Когда U оп > 0 схема компаратора работает как детектор уровня (рис. 5.13. в). На интервале M – N U ВЫХ равно − U НАС , поскольку потенциал входа (+) меньше потенциала входа (−) (U оп < U ВХ ). При U ВХ < U оп (интервал N – K) U ВЫХ равно +U НАС .

Если поменять местами входы подачи входного напряжения и формирования опорного, то можно получить схему компаратора, чувствительную к напряжению на входе (+).

На практике в некоторых случаях напряжение входа может колебаться относительно опорного уровня. Такие колебания более чем вероятны из-за неизбежных наводок на провода, подходящие к входным зажимам ОУ (напряжение шумов). В этом случае напряжение U ВЫХ будет колебаться от одного уровня насыщения к другому, что может приводить к ложным срабатываниям устройств сигнализации, измерения или исполнительных механизмов. С целью предотвращения реакции выходного напряжения на ложные пересечения опорного уровня, в компараторы вводят положительную обратную связь (ПОС). Такие компараторы носят название компараторы с ПОС или регенеративные компараторы, триггеры Шмитта. ПОС осуществляется путем подачи на неинверсный вход некоторой части выходного напряжения U ВЫХ с помощью резистивного делителя R3 - R4 (рис. 5.14). Напряжение, формируемое резистивным делителем, будет иметь различные значения, поскольку оно зависит от знака U ВЫХ . Оно называется верхним или нижним пороговым напряжением и в компараторах с ПОС устанавливается автоматически:

. (5.12)

Положительная обратная связь создает эффект спускового механизма, ускоряя переключение U ВЫХ из одного состояния в другое. Как только

U ВЫХ начинает изменяться, возникает регенеративная обратная связь, заставляющая U ВЫХ изменяться ещё быстрее. В момент времени равный нулю (рис. 5.14. а, б), U ВХ отрицательно, поэтому выходное напряжение равно +U НАС и на неинверсном входе будет установлен порог U П.В. . В момент времени t1 напряжение U ВХ > +U НАС и компаратор переключается по выходу в напряжение − U НАС . При этом на неинверсном входе установится порог U П.Н. . Очередное переключение компаратора произойдет в момент t2 , когда U ВХ станет более отрицательным чем напряжение − U НАС .Если пороговые напряжения превышают по величине амплитуду шумов, то ПОС не допустит ложных срабатываний на выходе (рис. 5.14. а, б). Диапазон напряжений − U НАС ≤ U ≤ +U НАС носит название «Гистерезис» или «Зона нечувствительности».