Презентация на тему создание конденсатора. История создания. Конденсаторы переменной электроемкости

«Конденсатор физика» - Виды конденсаторов. - Бумажный конденсатор - слюдяной конденсатор электролитический конденсатор. Воздушный конденсатор. Соединения конденсаторов. - Воздушный конденсатор. Определение конденсатора. При подключении электролитического конденсатора необходимо соблюдать полярность. Назначение конденсаторов.

«Использование конденсаторов» - Опыты с конденсатором. Конденсатор используется в схемах зажигания. Формулы энергии. Применение конденсаторов. Особенности применения конденсаторов. Конденсатор используется в медицине. Светильники с разрядными лампами. Емкостная клавиатура. Конденсатор. Мобильные телефоны. Применяется в телефонии и телеграфии.

«Электроемкость и конденсаторы» - В клавиатуре компьютера. Конденсатор переменной емкости. Соединение конденсаторов. Электроемкость. Последовательное. Фотовспышки. Схемы соединения конденсаторов. Обозначение на электрических схемах: Конденсаторы. Электроемкость плоского конденсатора. Все электрическое поле сосредоточено внутри конденсатора.

«Применение конденсаторов» - Для аккумуляторов последних время регенерации принципиально важно. Полимерные конденсаторы с твёрдым электролитом на чипсете. Схема телефонного «жучка». Схема выпрямителя тока. Конденсатор CTEALTG STC - 1001. Микрофон конденсаторный. Удачная ассоциация есть на сайте Sciencentral. Студийный конденсаторный направленный микрофон широкого применения.

«Конденсатор» - Емкость конденсатора. Отношение заряда. Энергия конденсатора. Конденсатор переменной емкости. Бумажный конденсатор. Площадь. Конденсатор. Применение конденсаторов. Урок физики в 9 классе

«Переменный ток» - Определение. Переменным током называется электрический ток, изменяющийся во времени по модулю и направлению. Переменный ток. Генератор переменного тока. ЭЗ 25.1 Получение переменного тока при вращении катушки в магнитном поле.

«Действие электрического тока» - Вам нужно сделать точный слепок с некоторого деревянного рельефа. Как по химическому действию тока можно судить о количестве прошедшего электричества? Какие действия электрического тока, проявляются в вашей квартире? «Подумаем». Выберите на демонстрационном столе оборудование для опыта в соответствии с рисунком.

«Мощность электрического тока» - А. A=IU Б. P=UI В. I=U/R А. A=UI Б. P=UI В. A=UIt А. Вт Б. А В. В А. 100 Вт Б. 400 Вт В. 4 кВт. Действие тока характеризуют две величины. Напряжение… Работа тока A=UIt. Электрический ток… Сила тока… Мощность электрического утюга равна 600 Вт, а мощность телевизора 100 Вт. Знать определение работы и мощности электрического тока на участке цепи?

«Электроемкость и конденсаторы» - Параллельное. Конденсаторы. Конденсатор переменной емкости. Все электрическое поле сосредоточено внутри конденсатора. -q. Энергия заряженного конденсатора. Соединение конденсаторов. Электроемкость. Последовательное. Обозначение на электрических схемах: Конденсатор постоянной емкости. +q. Вывод формулы энергии заряженного конденсатора.

«Переменный электрический ток» - В результате средняя мощность за период. Переменный Электрический ток. Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. E=-ф’= -bs(cos ?t)’= = bs? * sin ?t = em sin ?t. И наоборот, незатухающие вынужденные колебания имеют большое практическое значение. U=Um cos ?t.

«Конденсатор физика» - - Бумажный конденсатор - слюдяной конденсатор электролитический конденсатор. Назначение конденсаторов. Конденсаторы. При подключении электролитического конденсатора необходимо соблюдать полярность. Воздушный конденсатор. Определение конденсатора. Презентация по Физике на Тему: Бумажный конденсатор. Работу выполнила: Даутова Регина.

Всего в теме 9 презентаций

Слайд 1

Типы конденсаторов и их применение.

Слайд 2

Конденсатор - устройство для накопления заряда. Один из самых распространенных электрических компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

Слайд 3

В основном типы конденсаторов разделяют: По характеру изменения емкости - постоянной емкости, переменной емкости и подстроечные. По материалу диэлектрика - воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит). По способу монтажа - для печатного или навесного монтажа.

Слайд 4

Керамические конденсаторы.

Керамические конденсаторы или керамические дисковые конденсаторы сделаны из маленького керамического диска, покрытого с двух сторон проводником (обычно серебром). Благодаря довольно высокой относительной диэлектрической проницаемости (от 6 до 12) керамические конденсаторы могут вместить достаточно большую емкость при относительно малом физическом размере.

Слайд 5

Пленочные конденсаторы.

Емкость конденсатора зависит от площади обкладок. Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же два проводника разделенные диэлектриком, как и у плоского керамического конденсатора.

Слайд 6

Электролитические конденсаторы.

Электролитические конденсаторы обычно используются когда требуется большая емкость. Конструкция этого типа конденсаторов похожа на конструкцию пленочных, только здесь вместо диэлектрика используется специальная бумага, пропитанная электролитом. Обкладки конденсатора создаются из алюминия или тантала.

Слайд 7

Танталовые конденсаторы.

Танталовые конденсаторы физически меньше алюминиевых аналогов. Вдобавок электролитические свойства оксида тантала лучше чем оксида алюминия - у танталовых конденсаторов значительно менше утечка тока и выше стабильность емкости. Диапазон типичных емкостей от 47нФ до 1500мкФ.Танталовые электролитические конденсаторы также являются полярными, однако лучше переносят неправильное подключение полярности чем их алюминиевые аналоги. Вместе с тем, диапазон типичных напряжений танталовых компонентов значительно ниже – от 1В до 125В.

Слайд 8

Переменные конденсаторы.

Переменные конденсаторы широко используются в устройствах, где часто требуется настройка во время работы - приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала.

Слайд 9

Подстроечные конденсаторы.

Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Слайд 10

Применение конденсаторов.

Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.

Слайд 11

Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п. Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт. В промышленности конденсаторные установки применяются для компенсации реактивной энергии.

Слайд 12

Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью. Но к сожалению, конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.

МАОУ Гимназия №1

Презентация по физике в 10 кл

«Конденсаторы»

Учитель физики

I квалификационной категории

Г.Белогорск Амурская область

Клименко Елена Николаевна Учитель физики Презентация по теме «Линзы» 11 класс Муниципальное общеобразовательное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов №1 Г.Белогорск Амурская область


КОНДЕНСАТОР – два проводника (обкладки), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

С- электроемкость (способность двух проводников накапливать электрический заряд).

С= q/U q- заряд, U- напряжение

В СИ электроемкость измеряется в Ф (фарад), 1Ф = 1 Кл/В


Электроемкость конденсатора зависит от:

  • расстояния между пластинами –d(м),
  • площади пластин –S(м),
  • от рода диэлектрика – ε(диэлектрическая проницаемость среды).

C =εέS/d

έ – электрическая постоянная



По виду диэлектрика конденсаторы различают на:

  • Вакуумные
  • Газообразные
  • Жидкие
  • Стеклянные
  • Слюдяные
  • Керамические
  • Бумажные
  • Электролитические
  • Оксидно-полупроводниковые

Способы соединения конденсаторов:

  • последовательное

2) параллельное


Конденсаторы различают по возможности изменения своей емкости :

  • постоянные конденсаторы - емкость не изменяется
  • переменные конденсаторы - емкость изменяется в процессе функционирования аппаратуры
  • Подстроечные конденсаторы – емкость изменяется при разовой или периодической регулировке и не изменяется в процессе работы аппаратуры

Энергия заряженного конденсатора определяется по формуле:

Си: [W] = Дж


Название

Емкость

Плоский конденсатор

Схема

Цилиндрический конденсатор

Сферический конденсатор

Применение конденсаторов :

  • Конденсаторы (совместно с катушками индуктивности и/или резисторами ) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров , цепей обратной связи , колебательных контуров и т. п.
  • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках , электромагнитных ускорителях , импульсных лазерах с оптической накачкой , генераторах Маркса, (ГИН; ГИТ) , генераторах Кокрофта-Уолтона и т. п.
  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • Измерителя уровня жидкости. Непроводящая жидкость, заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня
  • Измерительный преобразователь(ИП)влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).
  • Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов

Источники литературы:

1.Справочник по физике. Х.Кухлинг.,Москва «Мир», 1983.

2.Учебник по физике 10 кл.Г.Я.Мякишев. ,Б.Б.Буховцев., Н.Н.Сотский.2004.