Запоминающие устройства и основные внешние устройства пк. Постоянное запоминающее устройство служит для хранения информации 8 постоянное запоминающее устройство служит для

Тест по теме: «Устройство компьютера»

Вопрос № 1 : Компьютер - это :

1. устройства для работы с текстом;

2. комплекс программно - аппаратных средств, предназначенных для выполнения информационных процессов;

3. электронно-вычислительное устройство для работы с числами;

4. устройство для обработки аналоговых сигналов.

Правильный ответ -2

Вопрос №2: Для реализации процесса "обработка" предназначен...

1. процессор; 2. винчестер;

3. гибкий магнитный диск; 4. CD - ROM.

Правильный ответ -1

Вопрос №3: Тактовая частота процессора - это:

1. число вырабатываемых за одну секунду импульсов;

2. число возможных обращений к оперативной памяти;

3. число операций, совершаемых процессором за одну секунду;

4. скорость обмена информацией между процессором и ПЗУ.

Правильный ответ -1

Вопрос №4: Из какого списка устройств можно составить работающий персональный компьютер?

1. процессор, монитор, клавиатура;

2. процессор, оперативная память, монитор, клавиатура;

3. винчестер, монитор, мышь;

4. клавиатура, винчестер, CD - дисковод.

Правильный ответ -2

Вопрос №5 : Магистрально - модульный принцип архитектуры ЭВМ подразумевает такую организацию аппаратных средств, при которой:

1. каждое устройство связывается с другим напрямую;

2. устройства связываются друг с другом последовательно в определенной последовательности;

3. все устройства подключаются к центральному процессору;

4. все устройства связаны друг с другом через специальный трехжильный кабель, называемый магистралью.

Правильный ответ -4

Вопрос №6: Назовите устройства, входящие в состав процессора.

1. оперативная память, принтер;

2. арифметико-логическое устройство, устройство управления;

3. ПЗУ, видеопамять;

4. видеокарта, контроллеры.

Правильный ответ -2

Вопрос №7. К внутренней памяти не относятся:

1. ОЗУ 2. ПЗУ 3. Жесткий диск 4. Кэш-память

Правильный ответ -3

Вопрос №8: Для того, чтобы информация хранилась долгое время ее, надо записать.

1. в оперативную память; 2. в регистры процессора;

3. на жесткий диск; 4. в ПЗУ.

Правильный ответ -3

Вопрос №9: После отключения компьютера все информация стирается...

1. из оперативной памяти; 2. с жесткого диска;

3. с CD - ROM; 4. с гибкого диска.

Правильный ответ -1

Вопрос №10 : Оперативная память имеет следующую структуру:

1. состоит из ячеек, каждая ячейка имеет адрес и содержание.

2. разбита на сектора и дорожки, информация записана в виде намагниченных и не намагниченных областей;
3. разбита на кластеры, информация записана в виде намагниченных и не намагниченных областей;

Правильный ответ -1

Вопрос №11: Информация, записанная на магнитный диск, называется:

1. ячейка; 2. регистр; 3. файл.

Правильный ответ -3

Вопрос №12: Дисковод - это устройство для:

1. обработки команд исполняемой программы; 2. хранения информации;

3. вывода информации на бумагу;

4. чтения/записи данных с внешнего носителя.

Правильный ответ -4

Вопрос №13: Для ввода информации предназначено устройство...

1. процессор; 2. ПЗУ;

3. клавиатура; 4. принтер.

Правильный ответ -3

Вопрос №14: Манипулятор "мышь" - это устройство:

1. модуляции и демодуляции; 2. ввода информации;

3. хранения информации; 4. считывания информации.

Правильный ответ -2

Вопрос №15 : Для вывода информации на бумагу предназначен:

1. принтер; 2. сканер; 3. монитор; 4. процессор.

Правильный ответ - 1

Вопрос №16 : Монитор работает под управлением:

1. оперативной памяти; 2. звуковой карты;

3. видеокарты; 4. клавиатуры.

Правильный ответ -3

Вопрос №17: Персональный компьютер не будет функционировать, если отключить:
1. дисковод; 2. оперативную память; 3. мышь; 4. принтер

Правильный ответ -2

Вопрос №18: Адресуемость оперативной памяти означает:
1. дискретность структурных единиц памяти;
2. энергозависимость оперативной памяти;
3. наличие номера у каждой ячейки оперативной памяти;
4. возможность произвольного доступа к каждой единице памяти

Правильный ответ -3

Вопрос №19: Принцип программного управления работой компьютера предполагает:
1. двоичное кодирование данных в компьютере;
2. необходимость использование операционной системы для синхронной работы аппаратных средств;
3. возможность выполнения без внешнего вмешательства целой серии команд.

Правильный ответ -3

Вопрос №20 : Постоянное запоминающее устройство служит для:
1. хранения программ начальной загрузки компьютера и тестирования его узлов;
2. хранения программы пользователя во время его работы;
3. записи особо ценных прикладных программ;
4. постоянного хранения особо ценных документов.

Правильный ответ -1

Кому-то кажется, что это очень простая информация, неужели по ней нужны дополнительные объяснения? Но есть люди, задающие вопрос «Постоянное запоминающее устройство служит для чего?», и это не редкость, поэтому хотелось бы внести немного ясности в отношении этой темы.

Что такое постоянное запоминающее устройство?

Постоянное запоминающее устройство служит для хранения данных, представленных в электронном варианте. Есть и другая, более понятная рядовому пользователю формулировка. Постоянное запоминающее устройство служит для хранения программ, которые используются на электронных устройствах. Зачастую изготавливается в виде прямоугольника, внутри которого есть необходимое аппаратное обеспечение, которое может обеспечить хранение ограниченного количества данных в условиях, когда не подаётся постоянное электрическое напряжение. Другими словами, ПЗУ имеют энергетически независимую память, в которой и хранятся необходимые данные. Если человек читает эти слова, то можно сделать заключение, что он уже использует ПЗУ, поскольку пользуется соответствующим девайсом. Если есть желание увидеть устройство воочию, то это вполне можно сделать. Как - зависит от девайса, с которого читают эту статью. Если с компьютера, то необходимо снять защитную панель с системного блока и посмотреть на переднюю часть компьютера. Там можно увидеть довольно небольшое устройство размером 20*10*4 сантиметра или около этого (внимание, сейчас разговор идёт о системном блоке компьютера, а не о ноутбуке, не перепутайте). ПЗУ выглядит как кусок черной пластмассы, окованный по бокам железными пластинами.

Итак, можно сказать, что служит для хранения ответов на все возможные вопросы, ведь именно там сберегается вся информация, которую пользователь сохраняет на своем компьютере. Но подробнее будут рассмотрены далее.

Какие они бывают?

По особенностями их использования можно выделить два вида ПЗУ:

  • Переносные. Сюда можно отнести те постоянные запоминающие устройства, которые удобно использовать при переноске от одного компьютера или электрического устройства к другому. Сюда можно отнести электронные накопительные книги, флеш-носители и много других подобных по функционалу устройств.
  • Стационарные. Эти устройства рассчитаны на то, что их один раз установят и будут пользоваться годами. То ПЗУ, что установлено в компьютер, принадлежит к этому виду.

Чем разнятся постоянные запоминающие устройства?

До недавнего времени основная и самая значительная разница между ними заключалась в количестве информации, которую можно записать. Так, основными носителями были магнитные ленты и производные от них - дискеты, которые имели памяти в сотни и тысячи раз меньше, чем жесткие диски компьютеров. Но шло время, и сейчас переносные ПЗУ по объему памяти не уступают стационарным, иногда являясь модифицированными под перенос жесткими дисками компьютера. Но даже сейчас сохранилась ощутимая разница:

  • Размер. Как правило, переносные запоминающие устройства всё же рассчитаны на меньший объем памяти, поэтому вполне закономерно, они меньше по размеру.
  • Различные типы подключения к самому компьютеру, а также места подключения: внешние и внутренние (снаружи системного блока и внутри него).
  • Скорость взаимодействия. Это, вероятно, замечали многие читатели. Если переброска файлов между папками на самом компьютере занимает секунды, то для переброски с внешнего устройства в память компьютера понадобятся минуты.

Переносные запоминающие устройства

К переносным запоминающим устройствам следует отнести такую электронику:

  • Электронные накопительные книги. Это постоянное запоминающее устройство служит для хранения огромнейших массивов данных. Так, эти книги по размеру соответствуют обычным книгам из бумаги, но количество данных, которое может быть размещено на них, впечатляет: это до 10 Терабайт (такие экземпляры есть в свободной продаже на момент написания статьи).
  • Диски на основе лазерной технологии (CD, DVD и прочее). Наверное, у многих можно найти небольшие коллекции таких носителей, на которых были игры или фильмы, а некоторые и сейчас, в эпоху интернета и свободного доступа к информации, покупают их для домашней коллекции.
  • Устройства на магнитной ленте (дискеты, сейчас практически не используются).
  • Электронные многоразовые носители данных, созданные с применением технологии "флеш" (в народе они известны как флешки). Небольшое постоянное запоминающее устройство служит для хранения данных размером до нескольких единиц или десятков гигабайт.

Стационарные запоминающие устройства

К ним относятся:

  • Жесткие диски, которые устанавливаются в компьютеры.
  • Целые информационные системы накопления информации, которые можно увидеть в огромных центрах накопления данных.

И сейчас, зная в целом и общем, для чего предназначены постоянные запоминающие устройства, не лишним будет узнать, какое устройство выбрать. Но чтобы избежать неприятного разочарования, нужно сначала разобраться в системе подсчёте данных. Дело в том, что такие устройства работают на двоичной системе, для которой важным является число 1024. Так уж получилось, что 1 гигабайт имеет 1024 мегабайтов, 1 мегабайт имеет 1024 килобайта и т. д. (это тема для отдельной статьи). А производители носителей иногда поступают нечестно и берут за основу число 1000, округляя значение. Вы можете купить флеш-носитель на 16 000 мегабайт и вам скажут, что это 16 гигабайт, а в реальности там будет всего 14,9 Гб. А теперь к советам:

  • При покупке всегда проверяйте, отвечает ли указанный номинал на накопителе реальному положению дел. Попросите продавца проверить на установленном в магазине компьютере. В магазинах, которые ценят клиентов, такая процедура предусмотрена регламентом, так что можете не волноваться и смело просить.
  • Осмотрите постоянное устройство на наличие внешних повреждений. Проверка на работоспособность из пункта №1 здесь тоже будет полезной.
  • Проверьте качество гнёзд. Если видны повреждения, выберите другой товар.
  • И всегда помните про в случае покупки некачественного товара.

И напоследок давайте повторим: постоянное запоминающее устройство служит для хранения чего? Данных, представленных в электронном виде. Надеемся, после прочтения этой статьи любой читатель сможет ответить на этот вопрос без всякой заминки.

Постоянные запоминающие устройства (ПЗУ) в микропроцессорных вычислительных системах слу­жат для хранения программ и другой неизменяемой информации. Важное преимущество ПЗУ по сравне­нию с ОЗУ - сохранение информации при выключе­нии питания. Стоимость бита хранимой в ПЗУ инфор­мации может быть почти на порядок ниже, чем в ОЗУ. Постоянные ЗУ могут быть реализованы на основе различных физических принципов и элементов и отличаются способом занесения информации, крат­ностью занесения, способом стирания.

В настоящее время применяются следующие виды ПЗУ: программируемые на заводе-изготовителе или масочные ПЗУ (МПЗУ); программируемые пользова­телем ; перепрограммируемые ПЗУ . Первые два вида ПЗУ допускают только однократное про­граммирование, третий вид ПЗУ позволяет изменять хранимую в нем информацию многократно.

Рассмотрим подробнее каждый из типов ПЗУ.

Программируемые масочные ПЗУ про­граммируются их изготовителем, который по подго­товленной пользователем информации делает фото­шаблоны, с помощью которых заносит эту информа­цию в процессе производства на кристалл ПЗУ. Этот способ самый дешевый и предназначен для крупносе­рийного производства ПЗУ.

Масочные ПЗУ строятся на основе диодов, бипо­лярных и МДП-транзисторов. В диодных ПЗУ диоды включены в тех пересечениях матрицы, которые соот­ветствуют записи «1», и отсутствуют в местах, где должен быть записан «0». Внешние цепи управления диодных ПЗУ очень просты. Так как диодная матри­ца представляет собой элемент с гальваническими связями, то выходные сигналы имеют ту же форму, что и входные. Таким образом, если на входы пода­ются напряжения постоянных уровней, то и на выхо­дах уровни будут также постоянными, поэтому отпа­дает необходимость в выходном регистре для хране­ния информации. Масочные ПЗУ на биполярных и МДП-транзисторах также строятся в виде матриц. Постоянные ЗУ на МДП-транзисторах несколько проще в изготовлении, чем биполярные.

Масочные ПЗУ характеризуются большой надеж­ностью, но при их изготовлении возникает ряд не­удобств для заказчика и для изготовителя. Велика номенклатура ПЗУ и мала их тиражность, поэтому от изготовителя требуются повышенные затраты на фотошаблоны, что увеличивает стоимость ПЗУ. От­сутствует возможность оперативно изменять инфор­мацию в ПЗУ без изготовления новой ИС, что особен­но неудобно на этапе отработки программ системы.

Программируемые пользователем ПЗУ являются более универсальными и, следователь­но, более дорогими приборами. Они представляют собой матрицы биполярных приборов, связи которых с адресными и разрядными шинами разрушаются при занесении на специальных программирующих устрой­ствах соответствующих кодовых комбинаций. Эти устройства вырабатывают напряжения, необходимые и достаточные для пережигания плавких перемычек в выбранных запоминающих элементах ПЗУ. Воз­можность программирования пользователем сделала ПЗУ этого типа чрезвычайно удобными при разра­ботке микроЭВМ.

Наибольшее распространение получили ПЗУ с ультрафиолетовым стиранием серии К573, с плавки­ми перемычками серии К556 и К541, с электрическим стиранием и записью информации серий К558, К1601, К1609.

Во всех перечисленных типах запоминающих уст­ройств элементы, хранящие информацию, также рас­полагаются в виде ячеек двумерной матрицы. Каж­дая ячейка может хранить один бит информации, т. е. быть в состоянии логического «0» или «1». Физически на кристалле микросхемы ПЗУ ячейки располагаются на пересечении «словарных линий», идущих от де­шифратора, и разрядных линий, перпендикулярных словарным, которые подсоединяются ко входам муль­типлексора. На дешифратор и мультиплексор пода­ются разряды адреса. При подаче адреса на дешиф­ратор возбуждается одна из словарных линий и все запоминающие элементы, расположенные на ней, па­раллельно выдают хранящуюся в них информацию на все разрядные линии. Выборка нужного числа би- тов для подачи на выход микросхемы ЗУ осуществляется мультиплексором. В зависимости от организации микросхемы мультиплексор и дешифратор могут иметь различную разрядность. Например, микросхема емкостью (2X8) К бит может быть организована как матрица размером 128Х128, что означает использование внутри микросхемы дешифратора «1 - из-128» для возбуждения словарных линий и восьми мультиплексоров «16 - в - 1» для считывания разрядных Линий.

С учетом топологических и технологических особенностей каждого типа микросхем можно произвести деление матрицы запоминающих ячеек на блоки других размеров. Подобное построение запоминающих устройств является общим для всех типов. Отличия между ними - в организации запоминающих ячеек, располагающихся на пересечении «словарной» и «разрядных» линий.

Микросхемы с плавкими перемычками, выполненные по ТТЛ- или ТТЛШ-технологии, применяются там, где необходимо высокое быстродействие. На их основе создается память микропрограмм для микропроцессорных устройств с разрядно-модульной архитектурой (серия К589 й др.), устройства перемножения и функционального преобразования сигналов. Запоминающим элементом в микросхемах данного типа является я-р-/г-транзистор, подсоединенный базой к «словарной линии», коллектором к (Лъ а эмиттером, через плавкую перемычку, к «разрядной» линии. В качестве плавкой перемычки используется поликристаллический кремний или нихром, напыленные при изготовлении микросхемы.

Протекание тока программирования через нихро-мовую перемычку вызывает частичное испарение и окисление нихрома, это приводит к разрыву перемычки. Однако по истечении некоторого времени такая перемычка можёт восстановиться, поэтому - для повышения надежности программирования проводят электротермотренировку микросхем. Подобного недостатка лишены микросхемы с перемычками из поликристаллического кремния, в которых процесс необратимого перехода поликремния из проводящего состояния в непроводящее происходит под действием нагрева, вызванного протеканием тока.

При возбуждений «словарной линии» будут активизироваться (переходить в состояние «1») лишь те «разрядные» линии, к которым подсоединены транзисторы с невыплавленными перемычками. Таким образом, процесс программирования для микросхем данного типа сводится к удалению плавких перемычек в необходимых местах.

Схемы поддержки режима программирования обычно располагаются на самом кристалле микросхемы, и процесс программирования протекает следующим образом. На адресные входы подается адрес выбранной ячейки. Напряжение питания микросхемы повышается до напряжения программирования, необходимого для создания тока, достаточного для выплавления перемычки. Далее на выходах микросхемы путем задания тока указываются те разряды слова, -в которых будут выплавляться перемычки. В процессе занесения информации в микросхему необходимая последовательность подачи импульсов напряжения на определенные выводы обеспечивается программирующим устройством, которое параллельно контролирует правильность программирования, считывая информацию из ПЗУ. Постоянные ЗУ данного типа допускают только однократную запись информации в ячейку.

Микросхемы, в которых информация стирается с помощью ультрафиолетового излучения (УФППЗУ), имеют: возможность многократного программирования, достаточно малое время выборки и энергопотребление, большую емкость. Это делает их более предпочтительными для применения в качестве памяти микропроцессорных систем с сохранением информации после отключения питания. Микросхемы данного типа используются в блоках ПЗУ большинства микро- ЭВМ.

Запоминающим элементом в ПЗУ с УФ-стиранием является МОП-транзистор, расположенный на пересечении соответствующих «словарной» и «разрядной» линий. Информация о содержимом данной ячейки хранится в виде заряда на втором (плавающем) за­творе МОП-транзистора. Затвор называется плавающим, если он размещен между управляющим затво­ром данного транзистора и его каналом и окружен высокоомным диэлектриком.

Перепрограммируемые ПЗУ - это ПЗУ с изменяемым содержимым, на затворах матрицы МОП-транзисторов длительное время могут храниться заряды, образующие заданный код. Все перепрограммируемые ПЗУ представляют собой МОП-приборы.

При необходимости в перепрограммировании микросхемы предварительно записанную информацию стирают ультрафиолетовым светом через прозрачное кварцевое окошко на поверхности корпуса микросхемы. Попадая на плавающий затвор и выбивая из него фотоэлектроны, УФ-излучение разряжает плаваю­щий затвор МОП-транзистора. Время сохранения информации в микросхемах ПЗУ данного типа определяется качеством призатворного диэлектрика и для современных микросхем составляет десять лет и более.

Микросхемы ПЗУ с электрическим стиранием информации популярны у разработчиков микропроцессорной техники благодаря возможности быстрого сти­рания и записи, большим допустимым числом циклов перезаписи информации (10000 раз и более). Однако они достаточно дорогие и сложные по сравнению с микросхемами ПЗУ с УФ-стиранием и поэтому уступают последним по степени использования в микропро­цессорной аппаратуре.

Основу запоминающей ячейки в ПЗУ с электрическим стиранием составляет МОП-транзистор с плавающим затвором, такой же, как и в ПЗУ с УФ-стиранием. Но в микросхемах данного типа технологическими методами обеспечена возможность обратного туннели- рования, т.е. отбора электронов с плавающего затвора, что позволяет выборочно стирать занесенную информацию.

Кому-то кажется, что это очень простая информация, неужели по ней нужны дополнительные объяснения? Но есть люди, задающие вопрос "Постоянное запоминающее устройство служит для чего?", и это не редкость, поэтому хотелось бы внести немного ясности в отношении этой темы.

Что такое постоянное запоминающее устройство?

Постоянное запоминающее устройство служит для хранения данных, представленных в электронном варианте. Есть и другая, более понятная рядовому пользователю формулировка. Постоянное запоминающее устройство служит для хранения программ, которые используются на электронных устройствах. Зачастую изготавливается в виде прямоугольника, внутри которого есть необходимое аппаратное обеспечение, которое может обеспечить хранение ограниченного количества данных в условиях, когда не подаётся постоянное электрическое напряжение. Другими словами, ПЗУ имеют энергетически независимую память, в которой и хранятся необходимые данные. Если человек читает эти слова, то можно сделать заключение, что он уже использует ПЗУ, поскольку пользуется соответствующим девайсом. Если есть желание увидеть устройство воочию, то это вполне можно сделать. Как - зависит от девайса, с которого читают эту статью. Если с компьютера, то необходимо снять защитную панель с системного блока и посмотреть на переднюю часть компьютера. Там можно увидеть довольно небольшое устройство размером 20*10*4 сантиметра или около этого (внимание, сейчас разговор идёт о системном блоке компьютера, а не о ноутбуке, не перепутайте). ПЗУ выглядит как кусок черной пластмассы, окованный по бокам железными пластинами.

Итак, можно сказать, что постоянное запоминающее устройство служит для хранения ответов на все возможные вопросы, ведь именно там сберегается вся информация, которую пользователь сохраняет на своем компьютере. Но подробнее будут рассмотрены далее.

Какие они бывают?

По особенностями их использования можно выделить два вида ПЗУ:

  • Переносные. Сюда можно отнести те постоянные запоминающие устройства, которые удобно использовать при переноске от одного компьютера или электрического устройства к другому. Сюда можно отнести электронные накопительные книги, флеш-носители и много других подобных по функционалу устройств.
  • Стационарные. Эти устройства рассчитаны на то, что их один раз установят и будут пользоваться годами. То ПЗУ, что установлено в компьютер, принадлежит к этому виду.

Чем разнятся постоянные запоминающие устройства?

До недавнего времени основная и самая значительная разница между ними заключалась в количестве информации, которую можно записать. Так, основными носителями были магнитные ленты и производные от них - дискеты, которые имели памяти в сотни и тысячи раз меньше, чем жесткие диски компьютеров. Но шло время, и сейчас переносные ПЗУ по объему памяти не уступают стационарным, иногда являясь модифицированными под перенос жесткими дисками компьютера. Но даже сейчас сохранилась ощутимая разница:

  • Размер. Как правило, переносные запоминающие устройства всё же рассчитаны на меньший объем памяти, поэтому вполне закономерно, они меньше по размеру.
  • Различные типы подключения к самому компьютеру, а также места подключения: внешние и внутренние (снаружи системного блока и внутри него).
  • Скорость взаимодействия. Это, вероятно, замечали многие читатели. Если переброска файлов между папками на самом компьютере занимает секунды, то для переброски с внешнего устройства в память компьютера понадобятся минуты.

Переносные запоминающие устройства

К переносным запоминающим устройствам следует отнести такую электронику:

  • Электронные накопительные книги. Это постоянное запоминающее устройство служит для хранения огромнейших массивов данных. Так, эти книги по размеру соответствуют обычным книгам из бумаги, но количество данных, которое может быть размещено на них, впечатляет: это до 10 Терабайт (такие экземпляры есть в свободной продаже на момент написания статьи).
  • Диски на основе лазерной технологии (CD, DVD и прочее). Наверное, у многих можно найти небольшие коллекции таких носителей, на которых были игры или фильмы, а некоторые и сейчас, в эпоху интернета и свободного доступа к информации, покупают их для домашней коллекции.
  • Устройства на магнитной ленте (дискеты, сейчас практически не используются).
  • Электронные многоразовые носители данных, созданные с применением технологии "флеш" (в народе они известны как флешки). Небольшое постоянное запоминающее устройство служит для хранения данных размером до нескольких единиц или десятков гигабайт.

Стационарные запоминающие устройства

К ним относятся:

  • Жесткие диски, которые устанавливаются в компьютеры.
  • Целые информационные системы накопления информации, которые можно увидеть в огромных центрах накопления данных.

И сейчас, зная в целом и общем, для чего предназначены постоянные запоминающие устройства, не лишним будет узнать, какое устройство выбрать. Но чтобы избежать неприятного разочарования, нужно сначала разобраться в системе подсчёте данных. Дело в том, что такие устройства работают на двоичной системе, для которой важным является число 1024. Так уж получилось, что 1 гигабайт имеет 1024 мегабайтов, 1 мегабайт имеет 1024 килобайта и т. д. (это тема для отдельной статьи). А производители носителей иногда поступают нечестно и берут за основу число 1000, округляя значение. Вы можете купить флеш-носитель на 16 000 мегабайт и вам скажут, что это 16 гигабайт, а в реальности там будет всего 14,9 Гб. А теперь к советам:

  • При покупке всегда проверяйте, отвечает ли указанный номинал на накопителе реальному положению дел. Попросите продавца проверить на установленном в магазине компьютере. В магазинах, которые ценят клиентов, такая процедура предусмотрена регламентом, так что можете не волноваться и смело просить.
  • Осмотрите постоянное устройство на наличие внешних повреждений. Проверка на работоспособность из пункта №1 здесь тоже будет полезной.
  • Проверьте качество гнёзд. Если видны повреждения, выберите другой товар.
  • И всегда помните про права покупателя в случае покупки некачественного товара.

И напоследок давайте повторим: постоянное запоминающее устройство служит для хранения чего? Данных, представленных в электронном виде. Надеемся, после прочтения этой статьи любой читатель сможет ответить на этот вопрос без всякой заминки.


Внимание, только СЕГОДНЯ!