Процессор ARM Cortex A7: характеристики и отзывы. Процессоры ARM: особенности архитектуры, отличия и перспективы Что такое arm и x86

ARM процессор - мобильный процессор для смартфонов и планшетов.

В этой таблице представлены все известные на сегодняшний день ARM процессоры. Таблица ARM процессоров будет дополнятся и модернизироваться по мере появления новых моделей. В данной таблице используется условная система оценки производительности CPU и GPU. Данные о производительности ARM процессоров были взяты из самых разных источников, в основном исходя из результатов таких тестов, как: PassMark , Antutu , GFXBench .

Мы не претендуем на абсолютную точность. Абсолютно точно ранжировать и оценить производительность ARM процессоров невозможно, по той простой причине, что каждый из них, в чем-то имеет преимущества, а в чем-то отстает от других ARM процессоров. Таблица ARM процессоров позволяет увидеть, оценить и, главное, сравнить различные SoC (System-On-Chip) решения. Воспользовавшись нашей таблицей, Вы сможете сравнить мобильные процессора и достаточно точно узнать, как позиционируется ARM-сердце Вашего будущего (или настоящего) смартфона или планшета.

Вот мы провели сравнение ARM процессоров. Посмотрели и сравнили производительность CPU и GPU в различных SoC (System-оn-Chip). Но у читателя может возникнуть несколько вопросов: Где используются ARM процессора? Что такое ARM процессор? Чем отличается архитектура ARM от x86 процессоров? Попробуем разобраться во всем этом, не сильно углубляясь в подробности.

Для начала определимся с терминологией. ARM - это название архитектуры и одновременно название компании, ведущей ее разработку. Аббревиатура ARM расшифровывается как (Advanced RISC Machine или Acorn RISC Machine), что можно перевести как: усовершенствованная RISC-машина. ARM архитектура объединяет в себе семейство как 32, так и 64-разрядных микропроцессорных ядер, разработанных и лицензируемых компанией ARM Limited. Сразу хочется отметить, что компания ARM Limited занимается сугубо разработкой ядер и инструментария для них (средства отладки, компиляторы и т.д), но никак не производством самих процессоров. Компания ARM Limited продает лицензии на производство ARM процессоров сторонним фирмам. Вот неполный список компаний, получивших лицензию на производство ARM процессоров сегодня: AMD, Atmel, Altera, Cirrus Logic, Intel, Marvell, NXP, Samsung, LG, MediaTek, Qualcomm, Sony Ericsson, Texas Instruments, nVidia, Freescale ... и многие другие.

Некоторые компании, получившие лицензию на выпуск ARM процессоров, создают собственные варианты ядер на базе ARM архитектуры. Как пример можно назвать: DEC StrongARM, Freescale i.MX, Intel XScale, NVIDIA Tegra, ST-Ericsson Nomadik, Qualcomm Snapdragon, Texas Instruments OMAP, Samsung Hummingbird, LG H13, Apple A4/A5/A6 и HiSilicon K3.

На базе ARM процессоров сегодня работают фактически любая электроника: КПК, мобильные телефоны и смартфоны , цифровые плееры, портативные игровые консоли, калькуляторы, внешние жесткие диски и маршрутизаторы. Все они содержат в себе ARM-ядро, поэтому можно сказать, что ARM - мобильные процессоры для смартфонов и планшетов.

ARM процессор представляет из себя SoC , или "систему на чипе". SoC система, или "система на чипе", может содержать в одном кристалле, помимо самого CPU, и остальные части полноценного компьютера. Это и контроллер памяти, и контроллер портов ввода-вывода, и графическое ядро, и система геопозиционирования (GPS). В нем может находится и 3G модуль, а также многое другое.

Если рассматривать отдельное семейство ARM процессоров, допустим Cortex-A9 (или любое другое), нельзя сказать, что все процессоры одного семейства имеют одинаковую производительность или все снабжены GPS модулем. Все эти параметры сильно зависят от производителя чипа и того, что и как он решил реализовать в своем продукте.

Чем же отличается ARM от X86 процессоров ? Сама по себе RISC (Reduced Instruction Set Computer) архитектура подразумевает под собой уменьшенный набор команд. Что соответственно ведет к очень умеренному энергопотреблению. Ведь внутри любого ARM чипа находится гораздо меньше транзисторов, чем у его собрата из х86 линейки. Не забываем, что в SoC-системе все периферийные устройства находится внутри одной микросхемы, что позволяет ARM процессору быть еще более экономным в плане энергопотребления. ARM архитектура изначально была предназначена для вычисления только целочисленных операций, в отличии от х86, которые умеют работать с вычислениями с плавающей запятой или FPU. Нельзя однозначно сравнивать эти две архитектуры. В чем-то преимущество будет за ARM. А где-то и наоборот. Если попробовать ответить одной фразой на вопрос: в чем разница между ARMи X86 процессорами, то ответ будет таким: ARM процессор незнает того количества команд, которые знает х86 процессор. А те, что знает, выглядят гораздо короче. В этом его как плюсы, так и минусы. Как бы там ни было, в последнее время все говорит о том, что ARM процессора начинают медленно, но уверенно догонять, а кое в чем и перегонять обычные х86. Многие открыто заявляют о том, что в скором времени ARM процессоры заменят х86 платформу в сегменте домашних ПК. Как мы уже , в 2013 году уже несколько компаний с мировым именем полностью отказались от дальнейшего выпуска нетбуков в пользу планшетных пк. Ну а что будет на самом деле, время покажет.

Мы же будем отслеживать уже имеющиеся на рынке ARM процессоры.

Наверняка каждый из вас задавался вопросом: что же такое ARM? Очень часто можно услышать эту аббревиатуру, когда речь заходит о процессоре устройства. И порой не каждому до конца ясна её суть.

Скажем сразу, ARM — это компания, но ARM еще и архитектура процессора, которую разработала компания ARM.

ARM-процессор — это ЦПУ, основанное на RISC-архитектуре, разработанной компанией Acorn Computers в 1980-х годах, а в настоящее время разрабатывается компанией Advanced RISC Machines, к слову, отсюда и аббревиатура «ARM». При этом аббревиатура ARM по отношению непосредственно к архитектуре процессора означает Acorn RISC Machine. Другими словами, имеется два значения аббревиатуры ARM.

Advanced RISC Machines — это компания, расположенная в Великобритании, которая разрабатывает, проектирует и лицензирует ARM-архитектуру процессоров. ARM разрабатывает метод построения ARM-процессоров и такие компании, как , Apple и Samsung, разрабатывают свои процессоры на основе ARM. В настоящее время практически все устройства, имеющие небольшие габариты и оснащенные аккумулятором, имеют процессоры, построенные на ARM-архитектуре.

Имеется несколько типов архитектуры процессора: CISC, RISC, MISC. Первая отличается большим набором команд, то есть CISC рассчитана на работу со сложными инструкциям неодинаковой длины. RISC, напротив, имеет сокращенный набор команд, которые имеют один формат и отличаются простой кодировкой.

Чтобы понять разницу, представьте, что на вашем персональном компьютере установлен процессор от AMD или Intel с архитектурой CISC. СISC-процессоры генерируют больше MIPS (миллион инструкций в секунду, то есть число определённых инструкций, выполняемых процессором за одну секунду).

RICS-процессоры имеют меньше транзисторов, что позволяет им потреблять меньше энергии. Уменьшенное количество инструкции позволяет проектировать упрощенные микросхемы. Уменьшенный размер микросхемы приводит к небольшому размеру кристалла, что позволяет располагать на процессоре больше компонентов, это делает процессоры от ARM маленькими и гораздо более энергоэффективными.

ARM-архитектура отлично подходит смартфонам, для которых главное — энергопотребление, при этом по производительности ARM-процессоры, конечно, существенно уступают топовым решениям от Intel и AMD. При этом ARM-процессоры нельзя назвать слабыми. ARM поддерживает как 32-битную архитектуру, так и 64-битную, имеется также поддержка аппаратной виртуализации, продвинутое управление питанием.

Главным параметром при оценке ARM-процессоров является отношение производительности к потреблению энергии, здесь ARM-процессоры показывают себя лучше, чем, например, x86-процессор от Intel на базе архитектуры CISC.

Таким образом, в случае с суперкомпьютерами более привлекательным станет использование миллиона ARM-процессоров вместо тысячи процессоров на архитектуре x86.

По материалам androidcentral

Первые чипы ARM появились еще три десятилетия назад благодаря стараниям британской компании Acorn Computers (ныне ARM Limited), но долгое время пребывали в тени своих более именитых собратьев – процессоров архитектуры х86. Все перевернулось с ног на голову с переходом IT-индустрии в пост-компьютерную эпоху, когда балом стали править уже не ПК, а мобильные гаджеты.

Особенности архитектуры ARM

Начать стоит, пожалуй, с того, что в процессорной архитектуре x86, которую сейчас используют компании Intel и AMD, применяется набор команд CISC (Complex Instruction Set Computer), хоть и не в чистом виде. Так, большое количество сложных по своей структуре команд, что долгое время было отличительной чертой CISC, сначала декодируются в простые, и только затем обрабатываются. Понятное дело, на всю эту цепочку действий уходит немало энергии.

В качестве энергоэффективной альтернативы выступают чипы архитектуры ARM с набором команд RISC (Reduced Instruction Set Computer). Его преимущество в изначально небольшом наборе простых команд, которые обрабатываются с минимальными затратами. Как результат, сейчас на рынке потребительской электроники мирно (на самом деле, не очень мирно) уживаются две процессорные архитектуры – х86 и ARM, каждая из которых имеет свои преимущества и недостатки.


Архитектура х86 позиционируется как более универсальная с точки зрения посильных ей задач, включая даже столь ресурсоемкие, как редактирование фотографий, музыки и видео, а также шифрование и сжатие данных. В свою очередь архитектура ARM «выезжает» за счет крайне низкого энергопотребления и в целом-то достаточной производительности для важнейших на сегодня целей: прорисовки веб-страниц и воспроизведения медиaконтента.


Бизнес-модель компании ARM Limited

Сейчас компания ARM Limited занимается лишь разработкой референсных процессорных архитектур и их лицензированием. Создание же конкретных моделей чипов и их последующее массовое производство – это уже дело лицензиатов ARM, которых насчитывается превеликое множество. Есть среди них как известные лишь в узких кругах компании вроде STMicroelectronics, HiSilicon и Atmel, так и IT-гиганты, имена которых у всех на слуху – Samsung, NVIDIA и Qualcomm. С полным списком компаний-лицензиатов можно ознакомиться на соответствующей странице официального сайта ARM Limited .


Столь большое число лицензиатов вызвано в первую очередь обилием сфер применения ARM-процессоров, причем мобильные гаджеты – это лишь вершина айсберга. Недорогие и энергоэффективные чипы используется во встраиваемых системах, сетевом оборудовании и измерительных приборах. Платежные терминалы, внешние 3G-модемы и спортивные пульсометры – все эти устройства основаны на процессорной архитектуре ARM.


По подсчетам аналитиков, сама ARM Limited зарабатывает на каждом произведенном чипе $0,067 в виде роялти. Но это сильно усредненная сумма, ведь по себестоимости новейшие многоядерные процессоры значительно превосходят одноядерные чипы устаревшей архитектуры.

Однокристальная система

С технической точки зрения называть чипы архитектуры ARM процессорами не совсем верно, ведь помимо одного или нескольких вычислительных ядер они включают целый ряд сопутствующих компонентов. Более уместными в данном случае являются термины однокристальная система и система-на-чипе (от англ. system on a chip).

Так, новейшие однокристальные системы для смартфонов и планшетных компьютеров включают контроллер оперативной памяти, графический ускоритель, видеодекодер, аудиоокодек и опционально модули беспроводной связи. Узкоспециализированные чипы могут включать дополнительные контроллеры для взаимодействия с периферийными устройствами, например датчиками.


Отдельные компоненты однокристальной системы могут быть разработаны как непосредственно ARM Limited, так и сторонними компаниями. Ярким тому примером являются графические ускорители, разработкой которых помимо ARM Limited (графика Mali) занимаются Qualcomm (графика Adreno) и NVIDIA (графика GeForce ULP).

Не стоит забывать и про компанию Imagination Technologies, которая ничем другим, кроме проектирования графических ускорителей PowerVR, вообще не занимается. А ведь именно ей принадлежит чуть ли не половина глобального рынка мобильной графики: гаджеты Apple и Amazon, планшетники Samsung Galaxy Tab 2, а также недорогие смартфоны на базе процессоров MTK.

Устаревшие поколения чипов

Морально устаревшими, но все еще широко распространенными процессорными архитектурами являются ARM9 и ARM11, которые принадлежат к семействам ARMv5 и ARMv6 соответственно.

ARM9 . Чипы ARM9 могут достигать тактовой частоты 400 МГц и, скорее всего, именно они установлены внутри вашего беспроводного маршрутизатора и старенького, но все еще надежно работающего мобильного телефона вроде Sony Ericsson K750i и Nokia 6300. Критически важным для чипов ARM9 является набор инструкций Jazelle, который позволяет комфортно работать с Java-приложениями (Opera Mini, Jimm, Foliant и др.).

ARM11 . Процессоры ARM11 могут похвастаться расширенным по сравнению с ARM9 набором инструкций и куда более высокой тактовой частотой (вплоть до 1 ГГц), хотя для современных задач их мощности тоже не достаточно. Тем не менее, благодаря невысокому энергопотреблению и, что не менее важно, себестоимости, чипы ARM11 до сих пор применяются в смартфонах начального уровня: Samsung Galaxy Pocket и Nokia 500.

Современные поколения чипов

Все более-менее новые чипы архитектуры ARM принадлежат к семейству ARMv7, флагманские представители которого уже достигли отметки в восемь ядер и тактовой частоты свыше 2 ГГц. Разработанные непосредственно ARM Limited процессорные ядра принадлежат к линейке Cortex и большинство производителей однокристальных систем используют их без существенных изменений. Лишь компании Qualcomm и Apple создали собственные модификации на основе ARMv7 – первая назвала свои творения Scorpion и Krait, а вторая – Swift.


ARM Cortex-A8. Исторически первым процессорным ядром семейства ARMv7 было Cortex-A8, которое легло в основу таких известных SoC своего времени как Apple A4 (iPhone 4 и iPad) и Samsung Hummingbird (Samsung Galaxy S и Galaxy Tab). Оно демонстрирует примерно вдвое более высокую производительность по сравнению с предшествующим ARM11. К тому же, ядро Cortex-A8 получило сопроцессор NEON для обработки видео высокого разрешения и поддержку плагина Adobe Flash.

Правда, все это негативно сказалось на энергопотреблении Cortex-A8, которое значительно выше чем у ARM11. Несмотря на то, что чипы ARM Cortex-A8 до сих пор применяются в бюджетных планшетниках (однокристальная система Allwiner Boxchip A10), их дни пребывания на рынке, по всей видимости, сочтены.

ARM Cortex-A9. Вслед за Cortex-A8 компания ARM Limited представила новое поколение чипов – Cortex-A9, которое сейчас является самым распространенным и занимает среднюю ценовую нишу. Производительность ядер Cortex-A9 выросла примерно втрое по сравнению с Cortex-A8, да еще и появилась возможность объединять их по два или даже четыре на одном чипе.

Сопроцессор NEON стал уже необязательным: компания NVIDIA в своей однокристальной системе Tegra 2 его упразднила, решив освободить побольше места для графического ускорителя. Правда, ничего хорошего из этого не вышло, ведь большинство приложений-видеопроигрывателей все равно ориентировались на проверенный временем NEON.


Именно во времена «царствования» Cortex-A9 появились первые реализации предложенной ARM Limited концепции big.LITTLE, согласно которой однокристальные системы должны иметь одновременно мощные и слабые, но энергоэффективные процессорные ядра. Первой реализацией концепции big.LITTLE стала система-на-чипе NVIDIA Tegra 3 с четырьмя ядрами Cortex-A9 (до 1,7 ГГц) и пятым энергоэффективным ядром-компаньоном (500 МГц) для выполнения простеньких фоновых задач.

ARM Cortex-A5 и Cortex-A7. При проектировании процессорных ядер Cortex-A5 и Cortex-A7 компания ARM Limited преследовала одно и ту же цель – добиться компромисса между минимальным энергопотреблением ARM11 и приемлемым быстродействием Cortex-A8. Не забыли и про возможность объединения ядер по два-четыре – многоядерные чипы Cortex-A5 и Cortex-A7 мало-помалу появляются в продаже (Qualcomm MSM8625 и MTK 6589).


ARM Cortex-A15. Процессорные ядра Cortex-A15 стали логическим продолжением Cortex-A9 – как результат, чипам архитектуры ARM впервые в истории удалось примерно сравниться по быстродействию с Intel Atom, а это уже большой успех. Не зря ведь компания Canonical в системных требования к версии ОС Ubuntu Touch с полноценной многозадачностью указала двухъядерный процессор ARM Cortex-A15 или аналогичный Intel Atom.


Очень скоро в продажу поступят многочисленные гаджеты на базе NVIDIA Tegra 4 с четырьмя ядрами ARM Cortex-A15 и пятым ядром-компаньоном Cortex-A7. Вслед за NVIDIA концепцию big.LITTLE подхватила компания Samsung: «сердцем» смартфона Galaxy S4 стал чип Exynos 5 Octa с четырьмя ядрами Cortex-A15 и таким же количеством энергоэффективных ядер Cortex-A7.


Дальнейшие перспективы

Мобильные гаджеты на базе чипов Cortex-A15 еще толком не появились в продаже, а основные тенденции дальнейшего развития архитектуры ARM уже известны. Компания ARM Limited уже официально представила следующее семейство процессоров ARMv8, представители которого в обязательном порядке будут 64-разрядными. Открывают новую эпоху RISC-процессоров ядра Cortex-A53 и Cortex-A57: первое энергоэффективное, а второе высокопроизводительное, но оба способны работать с большими объемами оперативной памяти.

Производители потребительской электроники семейством процессоров ARMv8 пока особо-то не заинтересовались, но на горизонте вырисовались новые лицензиаты, планирующие вывести чипы ARM на серверный рынок: AMD и Calxeda. Идея новаторская, но вполне имеет право на жизнь: те же графические ускорители NVIDIA Tesla, состоящие из большого числа простых ядер, на практике доказали свою эффективность как серверных решений.

Еще совсем недавно (всего 10 лет назад) на рынке пользовательских процессоров было три архитектуры, и все они были более-менее неплохо разделены: ARM-процессоры ставились в мобильные устройства, где важно было время автономной работы, x86-процессоры ставились в устройства под управлением Windows, ну и в пику Intel Apple использовала в своих устройствах процессоры на архитектуре PowerPC (хотя мы знаем, что она все же «переползла» на x86). Но на сегодняшний момент на рынке пользовательских процессоров осталось всего две архитектуры - PowerPC выбыл из гонки, причем совсем недавно: последнее устройство на этой архитектуре, PlayStation 3, перестали производить всего пару недель назад. Более того - все больше утечек о том, что на ARM-процессорах можно будет запускать полноценную Windows, и с другой стороны - тот же Android отлично работает с х86-процессорами начиная с версии 4.0. То есть, как мы видим, разница между этими архитектурами все больше размывается в глазах пользователей, и в этой статье мы и выясним, почему так происходит.

Архитектура х86

Для начала определимся с тем, что же такое архитектура. Говоря простым языком, с точки зрения программиста архитектура процессора - это его совместимость с определенным набором команд, которые могут использоваться при написании программ и реализуются на аппаратном уровне с помощью различных сочетаний транзисторов процессора.


Процессоры х86 построены на архитектуре CISC (Complex Instruction Set Computing, процессоры с полным набором инструкций) - это означает, что в процессоре реализовано максимальное число инструкций, что, с одной стороны, упрощает написание программ и уменьшает их вес, и другной стороны - процессор практически невозможно нагрузить на 100%.

Первым процессором на архитектуре х86 был Intel 8086 - это первый 16-битный процессор от Intel, работающий на частоте до 10 МГц и выпущенный в 1978 году. Процессор оказался крайне популярным и производился до 1990 года, а все последующие процессоры стали с делать с ним совместимые. Сначала эта совместимость показывалась в виде окончания названия процессора на 86, ну а в дальнейшем, с выходом Pentium, архитектуру решили назвать х86.

В 1985 году вышел процессор i386, который стал первым 32-битный процессором от Intel, а к 1989 году Intel выпустила первый скалярный процессор i486 - этот процессор умел выполнять одну операцию за такт. В дальнейшем, с выходом Pentium в 1993 году, процессоры от Intel стали суперскалярными, то есть научились делать несколько операций за один такт, и суперконвейерными - то есть имели два вычислительных конвейера. Но это было еще не все - по сути все процессоры Intel, начиная с i486DX, являются CISC-процессорами с RISC-ядром (Reduced Instruction Set Computer, процессоры с сокращённым набором инструкций): в микропроцессор встраивается аппаратный транслятор, который непосредственно перед исполнением преобразуют CISC-инструкции процессоров x86 в более простой набор внутренних инструкций RISC, при этом одна команда x86 может порождать несколько RISC-команд.

С тех пор особо ничего не поменялось - да, росло число конвейеров, росло число операций за такт, процессоры стали многоядерными и 64-битными, но до сих пор все решения от Intel и AMD являются суперконвейерными суперскалярными микропроцессорами, построенными на основе CISC-архитектуры с RISC-ядром.

Архитектура ARM

Архитектура ARM появилась позже x86, в 1986 году с выходом процессора ARM2. Цель ее разработки была в максимальной оптимизации и уменьшения числа транзисторов - к примеру, под нагрузкой x86-процессор тогда использовал едва ли 30% от числа всех транзисторов, все другие банально простаивали. Поэтому ARM разработали собственный чип на RISC-архитектуре, который назвали ARM2 - он имел всего 30000 транзисторов (сравните с 275 тысячами транзисторов в актуальном тогда i386), и не имел как кэша (что в общем-то тогда было нормой для процессоров - кэш можно было докупить и поставить отдельно), но и микропрограммы как таковой - микрокод исполнялся как и любой другой машинный код, путём преобразования в простые инструкции:


В итоге из-за того, что число транзисторов в ARM-процессорах ощутимо меньше, чем в х86, мы и получаем, что их тепловыделение тоже ощутимо ниже. Но, с другой стороны, из-за упрощенной архитектуры и производительность у ARM тоже ощутимо ниже, чем у x86.

В дальнейшем к ARM так же прикрутили поддержку и суперскалярности, и суперконвеерности, процессоры стали многоядерными и несколько лет назад стали 64-битными. В итоге современные решения от ARM являются суперконвейерными суперскалярными микропроцессорами, построенными на основе RISC-архитектуры.

Итоги

В результате мы видим две крайности: x86 являются мощными решениями, обвешанными инструкциями, которые могут выполнять абсолютно любые задачи с хорошей скоростью. Но за это приходится платить увеличенным тепловыделением. ARM же - простые процессоры, у которых набор инструкций ощутимо меньше, поэтому выполнение многих серьезных задач на них не имеет особого смысла из-за медлительности процесса. Но при этом и тепловыделение низкое. Однако самое основное - обе архитектуры поддерживают RISC-инструкции, а значит что на обеих архитектурах можно запускать одинаковые ОС, что мы и видим в случае с Android, Linux и Windows, и это означает, что в будущем разница между х86 и ARM будет размываться все больше.

Название ARM, безусловно, слышали все, кто интересуется мобильными технологиями. Многие понимают данную аббревиатуру как тип процессора для смартфонов и планшетов, другие уточняют, что это вовсе не процессор, а его архитектура. И уж точно мало, кто вникал в историю появления ARM. В этой статье мы попробуем разобраться во всех этих нюансах и расскажем зачем нужны процессоры ARM современным гаджетам.

Краткий экскурс в историю

По запросу «ARM» Википедия выдает два значения этой аббревиатуры: Acorn RISC Machine и Advanced RISC Machines. Начнем по порядку. В 1980-х годах в Великобритании была основана компания Acorn Computers, которая начинала свою деятельность созданием персональных компьютеров. В то время Acorn еще называли «британской Apple». Решающим периодом для компании стал конец 80-х годов, когда ее главный инженер воспользовался решением двух выпускников местного университета, придумавших новый вид процессорной архитектуры с сокращенным набором команд (RISC). Так появился первый компьютер на базе процессора Acorn Risc Machine. Успех не заставил себя долго ждать. В 1990 году британцы заключили договор с Apple и вскоре начали работу над новой версией чипсета. В итоге команда разработчиков сформировала компанию под названием Advanced RISC Machines по аналогии с процессором. Чипы с новой архитектурой также стали именоваться Advanced Risc Machine или сокращенно ARM.

С 1998 года Advanced Risc Machine стала называться ARM Limited. На текущий момент компания не занимается производством и продажей собственных процессоров. Основным и единственным направлением деятельности ARM Limited является разработка технологий и продажа лицензий различным компаниям на использование архитектуры ARM. Некоторые производители покупают лицензию на готовые ядра, другие – так называемую «архитектурную лицензию» на производство процессоров с собственными ядрами. Среди таких компаний значатся Apple, Samsung, Qualcomm, nVidia, HiSilicon и другие. По некоторым данным, ARM Limited зарабатывает на каждом таком процессоре $0,067. Эта цифра усредненная и к тому же устаревшая. С каждым годом ядер в чипсетах становится все больше, и новые многоядерные процессоры превосходят по себестоимости устаревшие образцы.

Технические особенности чипов ARM

Существует два типа современных процессорных архитектур: CISC (Complex Instruction Set Computing) и RISC (Reduced Instruction Set Computing). К архитектуре CISC относится семейство процессоров x86 (Intel и AMD), к архитектуре RISC – семейство ARM. Основным формальным отличием RISC от CISC и, соответственно, x86 от ARM является сокращенный набор команд, используемый в RISC-процессорах. Так, например, каждая инструкция в CISC-архитектуре трансформируется в несколько RISC-команд. В добавок, RISC-процессоры используют меньше транзисторов и, таким образом, потребляют меньше энергии.


Основным приоритетом ARM-процессоров является отношение производительности к потреблению энергии. ARM имеет большее соотношение производительности на ватт чем x86. Вы можете получить необходимую мощность из 24 ядер x86 или из сотен маленьких ядер ARM с низким энергопотреблением. Разумеется, один даже самый мощный процессор на архитектуре ARM никогда не будет сопоставим по мощности с Intel Core i7. Но тот же Intel Core i7 нуждается в активной системе охлаждения и никогда не поместится в корпус телефона. Здесь ARM вне конкуренции. С одной стороны, это выглядит привлекательным вариантом для построения суперкомпьютера с использованием миллиона ARM-процессоров вместо тысячи процессоров x86. С другой стороны, нельзя однозначно сравнивать две архитектуры. В чем-то преимущество будет за ARM, а в чем-то – за x86.

Однако называть чипы архитектуры ARM процессорами не совсем корректно. Кроме нескольких процессорных ядер, они также включают другие компоненты. Наиболее подходящим будет термин «однокристальная система» или «система на кристалле» (SoC). Современные однокристальные системы для мобильных устройств включают контроллер оперативной памяти, графический ускоритель, видеодекодер, аудиокодек и модули беспроводной связи. Как уже было сказано ранее, отдельные компоненты чипсета могут быть разработаны сторонними производителями. Наиболее ярким примером этого являются графические ядра, разработкой которых кроме ARM Limited (графика Mali), занимаются Qualcomm (Adreno), NVIDIA (GeForce ULP) и Imagination Technologies (PowerVR).


На практике это выглядит следующим образом. Большинство бюджетных мобильных устройств на Android поставляются с чипсетами производства компании MediaTek , которая практически неизменно следует инструкциям ARM Limited и комплектует их ядрами Cortex-A и графикой Mali (реже PowerVR).


А-бренды для своих флагманских устройств зачастую используют чипсеты производства Qualcomm . К слову, последние чипы Qualcomm Snapdragon ( , ) оснащены полностью кастомными ядрами Kryo – для центрального процессора и Adreno – для графического ускорителя.


Что касается Apple , то для iPhone и iPad компания использует собственные чипы А-серии с графическим ускорителем PowerVR, производством которых занимаются сторонние компании. Так, в установлен 64-битный четырехъядерный процессор A10 Fusion и графический процессор PowerVR GT7600.


Актуальной на момент написания статьи считается архитектура процессоров семейства ARMv8 . В ней впервые стал использоваться 64-битный набор инструкций и появилась поддержка более 4 ГБ оперативной памяти. Архитектура ARMv8 имеет обратную совместимость с 32-битными приложениями. Наиболее эффективным и самым мощным процессорным ядром, разработанным ARM Limited, на данный момент является Cortex-A73 , и большинство производителей однокристальных систем используют его без изменений.


Cortex-A73 обеспечивает на 30% более высокую производительность по сравнению с Cortex-А72 и поддерживает полный набор ARMv8-архитектуры. Максимальная частота процессорного ядра составляет 2,8 ГГц.

Сфера использования ARM

Наибольшую славу ARM принесло развитие мобильных устройств. В преддверии массового производства смартфонов и другой портативной техники энергоэффективные процессоры пришлись как нельзя кстати. Кульминацией развития ARM Limited стал 2007 год, когда британская компания возобновила партнерство с Apple, а спустя некоторое время купертиновцы представили свой первый iPhone с процессором на архитектуре ARM. В последующем однокристальная система на базе архитектуры ARM стала неизменным компонентом практически всех смартфонов, представленных на рынке.


Портфолио компании ARM Limited не ограничивается только ядрами семейства Cortex-A. Фактически, под маркой Cortex существует три серии процессорных ядер, которые обозначаются буквами A, R, M. Семейство ядер Cortex-А , как мы уже знаем, является наиболее мощными. Их в основном используют в смартфонах, планшетах, ТВ-приставках, спутниковых ресиверах, автомобильных системах, робототехнике. Процессорные ядра Cortex-R оптимизированы для выполнения высокопроизводительных задач в режиме реального времени, поэтому такие чипы встречаются в медицинском оборудовании, автономных системах безопасности, носителях информации. Основной задачей семейства Cortex-M является простота и низкая стоимость. Технически это самые слабые процессорные ядра с наиболее низким энергопотреблением. Процессоры на базе таких ядер используются практически везде, где от устройства требуется минимальная мощность и низкая стоимость: сенсоры, контроллеры, сигнализации, дисплеи, умные часы и другая техника.

В общем, большинство современных устройств от маленьких до больших, нуждающихся в центральном процессоре, используют чипы ARM. Огромным плюсом при этом является тот факт, что архитектура ARM поддерживается множеством операционных систем на платформе Linux (в том числе Android и Chrome OS), iOS, и Windows (Windows Phone).

Конкуренция на рынке и перспективы на будущее

Стоит признать, на данный момент у ARM нет серьезных конкурентов. И по большому счету это связано с тем, что компания ARM Limited в определенное время сделала правильный выбор. А ведь в самом начале своего пути компания выпускала процессоры для ПК и даже пыталась конкурировать с Intel. После того, как ARM Limited поменяла направление своей деятельности, ей также было непросто. Тогда программный монополист в лице Microsoft, заключив партнерское соглашение с Intel, не оставил никаких шансов другим производителям, в том числе и ARM Limited – ОС Windows просто не работала на системах с процессорами ARM. Как бы парадоксально это не звучало, но сейчас ситуация может кардинально измениться, и уже ОС Windows готова поддерживать процессоры на этой архитектуре.


На волне успехов чипов ARM компания Intel предприняла попытку создать конкурентоспособный процессор и вышла на рынок с чипом Intel Atom . Для этого ей потребовалось гораздо больше времени, нежели ARM Limited. В производство чипсет поступил в 2011 году, но, как говорится, поезд уже ушел. Intel Atom является CISC-процессором с архитектурой x86. Инженеры компании добились более низкого энергопотребления, нежели в ARM, однако на текущий момент разнообразный мобильный софт имеет плохую адаптацию к архитектуре x86.


В прошлом году Intel отказалась от нескольких ключевых решений в дальнейшем развитии мобильных систем. Фактически компания для мобильных устройств, поскольку они стали нерентабельными. Единственным крупным производителем, который комплектовал свои смартфоны чипсетами Intel Atom, был ASUS. Однако массовое использование Intel Atom все же получил в нетбуках, неттопах и других портативных устройствах.


Положение ARM Limited на рынке уникальное. На данный момент практически все производители пользуются ее разработками. При этом у компании нет собственных заводов. Это не мешает ей стоять в одном ряду с Intel и AMD. История ARM включает еще один любопытный факт. Не исключено, что сейчас технология ARM могла бы принадлежать компании Apple, которая стояла в основе формирования ARM Limited. По иронии судьбы в 1998 году купертиновцы, переживая кризисные времена, продали свою долю. Теперь Apple вынуждена наряду с другими компаниями покупать лицензию на процессоры ARM, используемые в iPhone и iPad.

Сейчас процессоры ARM способны выполнять серьезные задачи. В ближайшей перспективе – использование их в серверах, в частности такие решения уже имеют дата-центры Facebook и PayPal. В эпоху развития интернета вещей (IoT) и «умных» бытовых устройств чипы ARM получили еще большую востребовательность. Так что самое интересное у ARM еще впереди.