Технологии анализа больших данных. Big Data: аналитика и решения. Преимущества освобожденных исследований

Термин «Биг-Дата», возможно, сегодня уже узнаваем, но вокруг него все еще довольно много путаницы относительно того, что же он означает на самом деле. По правде говоря, концепция постоянно развивается и пересматривается, поскольку она остается движущей силой многих продолжающихся волн цифрового преобразования, включая искусственный интеллект, науку о данных и Интернет вещей. Но что же представляет собой технология Big-Data и как она меняет наш мир? Давайте попробуем разобраться объяснить суть технологии Биг-Даты и что она означает простыми словами.

Удивительный рост Биг-Даты

Все началось со «взрыва» в объеме данных, которые мы создали с самого начала цифровой эпохи. Это во многом связано с развитием компьютеров, Интернета и технологий, способных «выхватывать» данные из окружающего нас мира. Данные сами по себе не являются новым изобретением. Еще до эпохи компьютеров и баз данных мы использовали бумажные записи транзакций, клиентские записи и архивные файлы, которые и являются данными. Компьютеры, в особенности электронные таблицы и базы данных, позволили нам легко и просто хранить и упорядочивать данные в больших масштабах. Внезапно информация стала доступной при помощи одного щелчка мыши.

Тем не менее, мы прошли долгий путь от первоначальных таблиц и баз данных. Сегодня через каждые два дня мы создаем столько данных, сколько мы получили с самого начала вплоть до 2000 года. Правильно, через каждые два дня. И объем данных, которые мы создаем, продолжает стремительно расти; к 2020 году объем доступной цифровой информации возрастет примерно с 5 зеттабайтов до 20 зеттабайтов.

В настоящее время почти каждое действие, которое мы предпринимаем, оставляет свой след. Мы генерируем данные всякий раз, когда выходим в Интернет, когда переносим наши смартфоны, оборудованные поисковым модулем, когда разговариваем с нашими знакомыми через социальные сети или чаты и т.д. К тому же, количество данных, сгенерированных машинным способом, также быстро растет. Данные генерируются и распространяются, когда наши «умные» домашние устройства обмениваются данными друг с другом или со своими домашними серверами. Промышленное оборудование на заводах и фабриках все чаще оснащается датчиками, которые аккумулируют и передают данные.

Термин «Big-Data» относится к сбору всех этих данных и нашей способности использовать их в своих интересах в широком спектре областей, включая бизнес.

Как работает технология Big-Data?

Биг Дата работает по принципу: чем больше вы знаете о том или ином предмете или явлении, тем более достоверно вы сможете достичь нового понимания и предсказать, что произойдет в будущем. В ходе сравнения большего количества точек данных возникают взаимосвязи, которые ранее были скрыты, и эти взаимосвязи позволяют нам учиться и принимать более взвешенные решения. Чаще всего это делается с помощью процесса, который включает в себя построение моделей на основе данных, которые мы можем собрать, и дальнейший запуск имитации, в ходе которой каждый раз настраиваются значения точек данных и отслеживается то, как они влияют на наши результаты. Этот процесс автоматизирован — современные технологии аналитики будут запускать миллионы этих симуляций, настраивая все возможные переменные до тех пор, пока не найдут модель — или идею — которые помогут решить проблему, над которой они работают.

Бил Гейтс висит над бумажным содержимым одного компакт диска

До недавнего времени данные были ограничены электронными таблицами или базами данных — и все было очень упорядочено и аккуратно. Все то, что нельзя было легко организовать в строки и столбцы, расценивалось как слишком сложное для работы и игнорировалось. Однако прогресс в области хранения и аналитики означает, что мы можем фиксировать, хранить и обрабатывать большое количество данных различного типа. В результате «данные» на сегодняшний день могут означать что угодно, начиная базами данных, и заканчивая фотографиями, видео, звукозаписями, письменными текстами и данными датчиков.

Чтобы понять все эти беспорядочные данные, проекты, имеющие в основе Биг Дату, зачастую используют ультрасовременную аналитику с привлечением искусственного интеллекта и компьютерного обучения. Обучая вычислительные машины определять, что же представляют собой конкретные данные — например, посредством распознавания образов или обработки естественного языка – мы можем научить их определять модели гораздо быстрее и достовернее, чем мы сами.

Как используется Биг-Дата?

Этот постоянно увеличивающийся поток информации о данных датчиков, текстовых, голосовых, фото- и видеоданных означает, что теперь мы можем использовать данные теми способами, которые невозможно было представить еще несколько лет назад. Это привносит революционные изменения в мир бизнеса едва ли не в каждой отрасли. Сегодня компании могут с невероятной точностью предсказать, какие конкретные категории клиентов захотят сделать приобретение, и когда. Биг Дата также помогает компаниям выполнять свою деятельность намного эффективнее.

Даже вне сферы бизнеса проекты, связанные с Big-Data, уже помогают изменить наш мир различными путями:

  • Улучшая здравоохранение — медицина, управляемая данными, способна анализировать огромное количество медицинской информации и изображений для моделей, которые могут помочь обнаружить заболевание на ранней стадии и разработать новые лекарства.
  • Прогнозируя и реагируя на природные и техногенные катастрофы. Данные датчиков можно проанализировать, чтобы предсказать, где могут произойти землетрясения, а модели поведения человека дают подсказки, которые помогают организациям оказывать помощь выжившим. Технология Биг Даты также используется для отслеживания и защиты потока беженцев из зон военных действий по всему миру.
  • Предотвращая преступность. Полицейские силы все чаще используют стратегии, основанные на данных, которые включают их собственную разведывательную информацию и информацию из открытого доступа для более эффективного использования ресурсов и принятия сдерживающих мер там, где это необходимо.

Лучшие книги о технологии Big-Data

  • Все лгут. Поисковики, Big Data и Интернет знают о вас всё .
  • BIG DATA. Вся технология в одной книге .
  • Индустрия счастья. Как Big Data и новые технологии помогают добавить эмоцию в товары и услуги .
  • Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики .

Проблемы с Big-Data

Биг Дата дает нам беспрецедентные идеи и возможности, но также поднимает проблемы и вопросы, которые необходимо решить:

  • Конфиденциальность данных – Big-Data, которую мы сегодня генерируем, содержит много информации о нашей личной жизни, на конфиденциальность которой мы имеем полное право. Все чаще и чаще нас просят найти баланс между количеством персональных данных, которые мы раскрываем, и удобством, которое предлагают приложения и услуги, основанные на использовании Биг Даты.
  • Защита данных — даже если мы решаем, что нас устраивает то, что у кого-то есть наши данные для определенной цели, можем ли мы доверять ему сохранность и безопасность наших данных?
  • Дискриминация данных — когда вся информация будет известна, станет ли приемлемой дискриминация людей на основе данных из их личной жизни? Мы уже используем оценки кредитоспособности, чтобы решить, кто может брать деньги, и страхование тоже в значительной степени зависит от данных. Нам стоит ожидать, что нас будут анализировать и оценивать более подробно, однако следует позаботиться о том, чтобы это не усложняло жизнь тех людей, которые располагают меньшими ресурсами и ограниченным доступом к информации.

Выполнение этих задач является важной составляющей Биг Даты, и их необходимо решать организациям, которые хотят использовать такие данные. Неспособность осуществить это может сделать бизнес уязвимым, причем не только с точки зрения его репутации, но также с юридической и финансовой стороны.

Глядя в будущее

Данные меняют наш мир и нашу жизнь небывалыми темпами. Если Big-Data способна на все это сегодня — просто представьте, на что она будет способна завтра. Объем доступных нам данных только увеличится, а технология аналитики станет еще более продвинутой.

Для бизнеса способность применять Биг Дату будет становиться все более решающей в ​​ближайшие годы. Только те компании, которые рассматривают данные как стратегический актив, выживут и будут процветать. Те же, кто игнорирует эту революцию, рискуют остаться позади.



Как вам статья? Еще более годный контент на моем замечательном YouTube-канале

Только остороженее! На моем ютубе можно стать слишком умным... 👇

Big Data – это не только сами данные, но и технологии их обработки и использования, методы поиска необходимой информации в больших массивах. Проблема больших данных по-прежнему остается открытой и жизненно важной для любых систем, десятилетиями накапливающих самую разнообразную информацию.

С данным термином связывают выражение «Volume, Velocity, Variety» – принципы, на которых строится работа с большими данными. Это непосредственно объем информации , быстродействие ее обработки и разнообразие сведений , хранящихся в массиве. В последнее время к трем базовым принципам стали добавлять еще один – Value , что обозначает ценность информации . То есть, она должна быть полезной и нужной в теоретическом или практическом плане, что оправдывало бы затраты на ее хранение и обработку.

В качестве примера типичного источника больших данных можно привести социальные сети – каждый профиль или публичная страница представляет собой одну маленькую каплю в никак не структурированном океане информации. Причем независимо от количества хранящихся в том или ином профиле сведений взаимодействие с каждым из пользователей должно быть максимально быстрым.

Большие данные непрерывно накапливаются практически в любой сфере человеческой жизни. Сюда входит любая отрасль, связанная либо с человеческими взаимодействиями, либо с вычислениями. Это и социальные медиа, и медицина, и банковская сфера, а также системы устройств, получающие многочисленные результаты ежедневных вычислений. Например, астрономические наблюдения, метеорологические сведения и информация с устройств зондирования Земли.

Информация со всевозможных систем слежения в режиме реального времени также поступает на сервера той или иной компании. Телевидение и радиовещание, базы звонков операторов сотовой связи – взаимодействие каждого конкретного человека с ними минимально, но в совокупности вся эта информация становится большими данными.

Технологии больших данных стали неотъемлемыми от научно-исследовательской деятельности и коммерции. Более того, они начинают захватывать и сферу государственного управления – и везде требуется внедрение все более эффективных систем хранения и манипулирования информацией.

Впервые термин «большие данные» появился в прессе в 2008 году, когда редактор журнала Nature Клиффорд Линч выпустил статью на тему развития будущего науки с помощью технологий работы с большим количеством данных. До 2009 года данный термин рассматривался только с точки зрения научного анализа, но после выхода еще нескольких статей пресса стала широко использовать понятие Big Data – и продолжает использовать его в настоящее время.

В 2010 году стали появляться первые попытки решить нарастающую проблему больших данных. Были выпущены программные продукты, действие которых было направлено на то, чтобы минимизировать риски при использовании огромных информационных массивов.

К 2011 году большими данными заинтересовались такие крупные компании, как Microsoft, Oracle, EMC и IBM – они стали первыми использовать наработки Big data в своих стратегиях развития, причем довольно успешно.

ВУЗы начали проводить изучение больших данных в качестве отдельного предмета уже в 2013 году – теперь проблемами в этой сфере занимаются не только науки о данных, но и инженерия вкупе с вычислительными предметами.

К основным методам анализа и обработки данных можно отнести следующие:

  1. Методы класса или глубинный анализ (Data Mining).

Данные методы достаточно многочисленны, но их объединяет одно: используемый математический инструментарий в совокупности с достижениями из сферы информационных технологий.

  1. Краудсорсинг.

Данная методика позволяет получать данные одновременно из нескольких источников, причем количество последних практически не ограничено.

  1. А/В-тестирование.

Из всего объема данных выбирается контрольная совокупность элементов, которую поочередно сравнивают с другими подобными совокупностями, где был изменен один из элементов. Проведение подобных тестов помогает определить, колебания какого из параметров оказывают наибольшее влияние на контрольную совокупность. Благодаря объемам Big Data можно проводить огромное число итераций, с каждой из них приближаясь к максимально достоверному результату.

  1. Прогнозная аналитика.

Специалисты в данной области стараются заранее предугадать и распланировать то, как будет вести себя подконтрольный объект, чтобы принять наиболее выгодное в этой ситуации решение.

  1. Машинное обучение (искусственный интеллект).

Основывается на эмпирическом анализе информации и последующем построении алгоритмов самообучения систем.

  1. Сетевой анализ.

Наиболее распространенный метод для исследования социальных сетей – после получения статистических данных анализируются созданные в сетке узлы, то есть взаимодействия между отдельными пользователями и их сообществами.

В 2017 году, когда большие данные перестали быть чем-то новым и неизведанным, их важность не только не уменьшилась, а еще более возросла. Теперь эксперты делают ставки на то, что анализ больших объемов данных станет доступным не только для организаций-гигантов, но и для представителей малого и среднего бизнеса. Такой подход планируется реализовать с помощью следующих составляющих:

  • Облачные хранилища.

Хранение и обработка данных становятся более быстрыми и экономичными – по сравнению с расходами на содержание собственного дата-центра и возможное расширение персонала аренда облака представляется гораздо более дешевой альтернативой.

  • Использование Dark Data.

Так называемые «темные данные» – вся неоцифрованная информация о компании, которая не играет ключевой роли при непосредственном ее использовании, но может послужить причиной для перехода на новый формат хранения сведений.

  • Искусственный интеллект и Deep Learning.

Технология обучения машинного интеллекта, подражающая структуре и работе человеческого мозга, как нельзя лучше подходит для обработки большого объема постоянно меняющейся информации. В этом случае машина сделает все то же самое, что должен был бы сделать человек, но при этом вероятность ошибки значительно снижается.

Предсказывалось, что общий мировой объем созданных и реплицированных данных в 2011-м может составить около 1,8 зеттабайта (1,8 трлн. гигабайт) - примерно в 9 раз больше того, что было создано в 2006-м.

Более сложное определение

Тем не менее `большие данные ` предполагают нечто большее, чем просто анализ огромных объемов информации. Проблема не в том, что организации создают огромные объемы данных, а в том, что бóльшая их часть представлена в формате, плохо соответствующем традиционному структурированному формату БД, - это веб-журналы, видеозаписи, текстовые документы, машинный код или, например, геопространственные данные. Всё это хранится во множестве разнообразных хранилищ, иногда даже за пределами организации. В результате корпорации могут иметь доступ к огромному объему своих данных и не иметь необходимых инструментов, чтобы установить взаимосвязи между этими данными и сделать на их основе значимые выводы. Добавьте сюда то обстоятельство, что данные сейчас обновляются все чаще и чаще, и вы получите ситуацию, в которой традиционные методы анализа информации не могут угнаться за огромными объемами постоянно обновляемых данных, что в итоге и открывает дорогу технологиям больших данных .

Наилучшее определение

В сущности понятие больших данных подразумевает работу с информацией огромного объема и разнообразного состава, весьма часто обновляемой и находящейся в разных источниках в целях увеличения эффективности работы, создания новых продуктов и повышения конкурентоспособности. Консалтинговая компания Forrester дает краткую формулировку: `Большие данные объединяют техники и технологии, которые извлекают смысл из данных на экстремальном пределе практичности`.

Насколько велика разница между бизнес-аналитикой и большими данными?

Крейг Бати, исполнительный директор по маркетингу и директор по технологиям Fujitsu Australia, указывал, что бизнес-анализ является описательным процессом анализа результатов, достигнутых бизнесом в определенный период времени, между тем как скорость обработки больших данных позволяет сделать анализ предсказательным, способным предлагать бизнесу рекомендации на будущее. Технологии больших данных позволяют также анализировать больше типов данных в сравнении с инструментами бизнес-аналитики, что дает возможность фокусироваться не только на структурированных хранилищах.

Мэтт Слокум из O"Reilly Radar считает, что хотя большие данные и бизнес-аналитика имеют одинаковую цель (поиск ответов на вопрос), они отличаются друг от друга по трем аспектам.

  • Большие данные предназначены для обработки более значительных объемов информации, чем бизнес-аналитика, и это, конечно, соответствует традиционному определению больших данных.
  • Большие данные предназначены для обработки более быстро получаемых и меняющихся сведений, что означает глубокое исследование и интерактивность. В некоторых случаях результаты формируются быстрее, чем загружается веб-страница.
  • Большие данные предназначены для обработки неструктурированных данных, способы использования которых мы только начинаем изучать после того, как смогли наладить их сбор и хранение, и нам требуются алгоритмы и возможность диалога для облегчения поиска тенденций, содержащихся внутри этих массивов.

Согласно опубликованной компанией Oracle белой книге `Информационная архитектура Oracle: руководство архитектора по большим данным` (Oracle Information Architecture: An Architect"s Guide to Big Data), при работе с большими данными мы подходим к информации иначе, чем при проведении бизнес-анализа.

Работа с большими данными не похожа на обычный процесс бизнес-аналитики, где простое сложение известных значений приносит результат: например, итог сложения данных об оплаченных счетах становится объемом продаж за год. При работе с большими данными результат получается в процессе их очистки путём последовательного моделирования: сначала выдвигается гипотеза, строится статистическая, визуальная или семантическая модель, на ее основании проверяется верность выдвинутой гипотезы и затем выдвигается следующая. Этот процесс требует от исследователя либо интерпретации визуальных значений или составления интерактивных запросов на основе знаний, либо разработки адаптивных алгоритмов `машинного обучения `, способных получить искомый результат. Причём время жизни такого алгоритма может быть довольно коротким.

Методики анализа больших данных

Существует множество разнообразных методик анализа массивов данных, в основе которых лежит инструментарий, заимствованный из статистики и информатики (например, машинное обучение). Список не претендует на полноту, однако в нем отражены наиболее востребованные в различных отраслях подходы. При этом следует понимать, что исследователи продолжают работать над созданием новых методик и совершенствованием существующих. Кроме того, некоторые из перечисленных них методик вовсе не обязательно применимы исключительно к большим данным и могут с успехом использоваться для меньших по объему массивов (например, A/B-тестирование, регрессионный анализ). Безусловно, чем более объемный и диверсифицируемый массив подвергается анализу, тем более точные и релевантные данные удается получить на выходе.

A/B testing . Методика, в которой контрольная выборка поочередно сравнивается с другими. Тем самым удается выявить оптимальную комбинацию показателей для достижения, например, наилучшей ответной реакции потребителей на маркетинговое предложение. Большие данные позволяют провести огромное количество итераций и таким образом получить статистически достоверный результат.

Association rule learning . Набор методик для выявления взаимосвязей, т.е. ассоциативных правил, между переменными величинами в больших массивах данных. Используется в data mining .

Classification . Набор методик, которые позволяет предсказать поведение потребителей в определенном сегменте рынка (принятие решений о покупке, отток, объем потребления и проч.). Используется в data mining .

Cluster analysis . Статистический метод классификации объектов по группам за счет выявления наперед не известных общих признаков. Используется в data mining .

Crowdsourcing . Методика сбора данных из большого количества источников.

Data fusion and data integration . Набор методик, который позволяет анализировать комментарии пользователей социальных сетей и сопоставлять с результатами продаж в режиме реального времени.

Data mining . Набор методик, который позволяет определить наиболее восприимчивые для продвигаемого продукта или услуги категории потребителей, выявить особенности наиболее успешных работников, предсказать поведенческую модель потребителей.

Ensemble learning . В этом методе задействуется множество предикативных моделей за счет чего повышается качество сделанных прогнозов.

Genetic algorithms . В этой методике возможные решения представляют в виде `хромосом`, которые могут комбинироваться и мутировать. Как и в процессе естественной эволюции, выживает наиболее приспособленная особь.

Machine learning . Направление в информатике (исторически за ним закрепилось название `искусственный интеллект`), которое преследует цель создания алгоритмов самообучения на основе анализа эмпирических данных.

Natural language processing (NLP ). Набор заимствованных из информатики и лингвистики методик распознавания естественного языка человека.

Network analysis . Набор методик анализа связей между узлами в сетях. Применительно к социальным сетям позволяет анализировать взаимосвязи между отдельными пользователями, компаниями, сообществами и т.п.

Optimization . Набор численных методов для редизайна сложных систем и процессов для улучшения одного или нескольких показателей. Помогает в принятии стратегических решений, например, состава выводимой на рынок продуктовой линейки, проведении инвестиционного анализа и проч.

Pattern recognition . Набор методик с элементами самообучения для предсказания поведенческой модели потребителей.

Predictive modeling . Набор методик, которые позволяют создать математическую модель наперед заданного вероятного сценария развития событий. Например, анализ базы данных CRM -системы на предмет возможных условий, которые подтолкнут абоненты сменить провайдера.

Regression . Набор статистических методов для выявления закономерности между изменением зависимой переменной и одной или несколькими независимыми. Часто применяется для прогнозирования и предсказаний. Используется в data mining.

Sentiment analysis . В основе методик оценки настроений потребителей лежат технологии распознавания естественного языка человека. Они позволяют вычленить из общего информационного потока сообщения, связанные с интересующим предметом (например, потребительским продуктом). Далее оценить полярность суждения (позитивное или негативное), степень эмоциональности и проч.

Signal processing . Заимствованный из радиотехники набор методик, который преследует цель распознавания сигнала на фоне шума и его дальнейшего анализа.

Spatial analysis . Набор отчасти заимствованных из статистики методик анализа пространственных данных – топологии местности, географических координат, геометрии объектов. Источником больших данных в этом случае часто выступают геоинформационные системы (ГИС).

Statistics . Наука о сборе, организации и интерпретации данных, включая разработку опросников и проведение экспериментов. Статистические методы часто применяются для оценочных суждений о взаимосвязях между теми или иными событиями.

Supervised learning . Набор основанных на технологиях машинного обучения методик, которые позволяют выявить функциональные взаимосвязи в анализируемых массивах данных.

Simulation . Моделирование поведения сложных систем часто используется для прогнозирования, предсказания и проработки различных сценариев при планировании.

Time series analysis . Набор заимствованных из статистики и цифровой обработки сигналов методов анализа повторяющихся с течением времени последовательностей данных. Одни из очевидных применений – отслеживание рынка ценных бумаг или заболеваемости пациентов.

Unsupervised learning . Набор основанных на технологиях машинного обучения методик, которые позволяют выявить скрытые функциональные взаимосвязи в анализируемых массивах данных. Имеет общие черты с Cluster Analysis .

Визуализация . Методы графического представления результатов анализа больших данных в виде диаграмм или анимированных изображений для упрощения интерпретации облегчения понимания полученных результатов.


Наглядное представление результатов анализа больших данных имеет принципиальное значение для их интерпретации. Не секрет, что восприятие человека ограничено, и ученые продолжают вести исследования в области совершенствования современных методов представления данных в виде изображений, диаграмм или анимаций.

Аналитический инструментарий

На 2011 год некоторые из перечисленных в предыдущем подразделе подходов или определенную их совокупность позволяют реализовать на практике аналитические движки для работы с большими данными. Из свободных или относительно недорогих открытых систем анализа Big Data можно порекомендовать:

  • Revolution Analytics (на базе языка R для мат.статистики).

Особый интерес в этом списке представляет Apache Hadoop – ПО с открытым кодом, которое за последние пять лет испытано в качестве анализатора данных большинством трекеров акций . Как только Yahoo открыла код Hadoop сообществу с открытым кодом, в ИТ-индустрии незамедлительно появилось целое направление по созданию продуктов на базе Hadoop. Практически все современные средства анализа больших данных предоставляют средства интеграции с Hadoop. Их разработчиками выступают как стартапы, так и общеизвестные мировые компании.

Рынки решений для управления большими данными

Платформы больших данных (BDP, Big Data Platform) как средство борьбы с цифровым хордингом

Возможность анализировать большие данные , в просторечии называемая Big Data, воспринимается как благо, причем однозначно. Но так ли это на самом деле? К чему может привести безудержное накопление данных? Скорее всего к тому, что отечественные психологи применительно к человеку называют патологическим накопительством, силлогоманией или образно "синдромом Плюшкина". По-английски порочная страсть собирать все подряд называют хордингом (от англ. hoard – «запас»). По классификации ментальных заболеваний хординг причислен к психическим расстройствам. В цифровую эпоху к традиционному вещественному хордингу добавляется цифровой (Digital Hoarding), им могут страдать как отдельные личности, так и целые предприятия и организации ().

Мировой и рынок России

Big data Landscape - Основные поставщики

Интерес к инструментам сбора, обработки, управления и анализа больших данных проявляли едва ли не все ведущие ИТ-компании, что вполне закономерно. Во-первых, они непосредственно сталкиваются с этим феноменом в собственном бизнесе, во-вторых, большие данные открывают отличные возможности для освоения новых ниш рынка и привлечения новых заказчиков.

На рынке появлялось множество стартапов, которые делают бизнес на обработке огромных массивов данных. Часть из них используют готовую облачную инфраструктуру, предоставляемую крупными игроками вроде Amazon.

Теория и практика Больших данных в отраслях

История развития

2017

Прогноз TmaxSoft: следующая «волна» Big Data потребует модернизации СУБД

Предприятиям известно, что в накопленных ими огромных объемах данных содержится важная информация об их бизнесе и клиентах. Если компания сможет успешно применить эту информацию, то у нее будет значительное преимущество по сравнению с конкурентами, и она сможет предложить лучшие, чем у них, продукты и сервисы. Однако многие организации всё еще не могут эффективно использовать большие данные из-за того, что их унаследованная ИТ-инфраструктура неспособна обеспечить необходимую емкость систем хранения, процессы обмена данных, утилиты и приложения, необходимые для обработки и анализа больших массивов неструктурированных данных для извлечения из них ценной информации, указали в TmaxSoft.

Кроме того, увеличение процессорной мощности, необходимой для анализа постоянно увеличивающихся объемов данных, может потребовать значительных инвестиций в устаревшую ИТ-инфраструктуру организации, а также дополнительных ресурсов для сопровождения, которые можно было бы использовать для разработки новых приложений и сервисов.

5 февраля 2015 года Белый дом опубликовал доклад , в котором обсуждался вопрос о том, как компании используют «большие данные » для установления различных цен для разных покупателей - практика, известная как «ценовая дискриминация» или «дифференцированное ценообразование» (personalized pricing). Отчет описывает пользу «больших данных» как для продавцов, так и покупателей, и его авторы приходят к выводу о том, что многие проблемные вопросы, возникшие в связи с появлением больших данных и дифференцированного ценообразования, могут быть решены в рамках существующего антидискриминационного законодательства и законов, защищающих права потребителей.

В докладе отмечается, что в это время имеются лишь отдельные факты, свидетельствующие о том, как компании используют большие данные в контексте индивидуализированного маркетинга и дифференцированного ценообразования. Этот сведения показывают, что продавцы используют методы ценообразования, которые можно разделить на три категории:

  • изучение кривой спроса;
  • Наведение (steering) и дифференцированное ценообразование на основе демографических данных; и
  • целевой поведенческий маркетинг (поведенческий таргетинг - behavioral targeting) и индивидуализированное ценообразование.

Изучение кривой спроса : С целью выяснения спроса и изучения поведения потребителей маркетологи часто проводят эксперименты в этой области, в ходе которых клиентам случайным образом назначается одна из двух возможных ценовых категорий. «Технически эти эксперименты являются формой дифференцированного ценообразования, поскольку их следствием становятся разные цены для клиентов, даже если они являются «недискриминационными» в том смысле, что у всех клиенты вероятность «попасть» на более высокую цену одинакова».

Наведение (steering) : Это практика представления продуктов потребителям на основе их принадлежности к определенной демографической группе. Так, веб-сайт компьютерной компании может предлагать один и тот же ноутбук различным типам покупателей по разным ценам, уставленным на основе сообщённой ими о себе информации (например, в зависимости от того, является ли данный пользователь представителем государственных органов, научных или коммерческих учреждений, или же частным лицом) или от их географического расположения (например, определенного по IP-адресу компьютера).

Целевой поведенческий маркетинг и индивидуализированное ценообразование : В этих случаях персональные данные покупателей используются для целевой рекламы и индивидуализированного назначения цен на определенные продукты. Например, онлайн-рекламодатели используют собранные рекламными сетями и через куки третьих сторон данные об активности пользователей в интернете для того, чтобы нацелено рассылать свои рекламные материалы. Такой подход, с одной стороны, дает возможность потребителям получить рекламу представляющих для них интерес товаров и услуг, Он, однако, может вызвать озабоченность тех потребителей, которые не хотят, чтобы определенные виды их персональных данных (такие, как сведения о посещении сайтов, связанных с медицинскими и финансовыми вопросами) собирались без их согласия.

Хотя целевой поведенческий маркетинг широко распространен, имеется относительно мало свидетельств индивидуализированного ценообразования в онлайн-среде. В отчете высказывается предположение, что это может быть связано с тем, что соответствующие методы все ещё разрабатываются, или же с тем, что компании не спешат использовать индивидуальное ценообразование (либо предпочитают о нём помалкивать) - возможно, опасаясь негативной реакции со стороны потребителей.

Авторы отчета полагают, что «для индивидуального потребителя использование больших данных, несомненно, связано как с потенциальной отдачей, так и с рисками». Признавая, что при использовании больших данных появляются проблемы прозрачности и дискриминации, отчет в то же время утверждает, что существующих антидискриминационных законов и законов по защиты прав потребителей достаточно для их решения. Однако в отчете также подчеркивается необходимость «постоянного контроля» в тех случаях, когда компании используют конфиденциальную информацию непрозрачным образом либо способами, которые не охватываются существующей нормативно-правовой базой.

Данный доклад является продолжением усилий Белого дома по изучению применения «больших данных» и дискриминационного ценообразования в Интернете, и соответствующих последствий для американских потребителей. Ранее уже сообщалось о том, что рабочая группа Белого дома по большим данным опубликовала в мае 2014 года свой доклад по этому вопросу. Федеральная комиссия по торговле (FTC) также рассматривала эти вопросы в ходе проведенного ею в сентября 2014 года семинара по дискриминации в связи с использованием больших данных .

2014

Gartner развеивает мифы о "Больших данных"

В аналитической записке осени 2014 года Gartner перечислен ряд распространенных среди ИТ-руководителей мифов относительно Больших Данных и приводятся их опровержения.

  • Все внедряют системы обработки Больших Данных быстрее нас

Интерес к технологиям Больших Данных рекордно высок: в 73% организаций, опрошенных аналитиками Gartner в этом году, уже инвестируют в соответствующие проекты или собираются. Но большинство таких инициатив пока еще на самых ранних стадиях, и только 13% опрошенных уже внедрили подобные решения. Сложнее всего - определить, как извлекать доход из Больших Данных, решить, с чего начать. Во многих организациях застревают на пилотной стадии, поскольку не могут привязать новую технологию к конкретным бизнес-процессам.

  • У нас так много данных, что нет нужды беспокоиться о мелких ошибках в них

Некоторые ИТ-руководители считают, что мелкие огрехи в данных не влияют на общие результаты анализа огромных объемов. Когда данных много, каждая ошибка в отдельности действительно меньше влияет на результат, отмечают аналитики, но и самих ошибок становится больше. Кроме того, большая часть анализируемых данных - внешние, неизвестной структуры или происхождения, поэтому вероятность ошибок растет. Таким образом, в мире Больших Данных качество на самом деле гораздо важнее.

  • Технологии Больших Данных отменят нужду в интеграции данных

Большие Данные обещают возможность обработки данных в оригинальном формате с автоматическим формированием схемы по мере считывания. Считается, что это позволит анализировать информацию из одних и тех же источников с помощью нескольких моделей данных. Многие полагают, что это также даст возможность конечным пользователям самим интерпретировать любой набор данных по своему усмотрению. В реальности большинству пользователей часто нужен традиционный способ с готовой схемой, когда данные форматируются соответствующим образом, и имеются соглашения об уровне целостности информации и о том, как она должна соотноситься со сценарием использования.

  • Хранилища данных нет смысла использовать для сложной аналитики

Многие администраторы систем управления информацией считают, что нет смысла тратить время на создание хранилища данных, принимая во внимание, что сложные аналитические системы пользуются новыми типами данных. На самом деле во многих системах сложной аналитики используется информация из хранилища данных. В других случаях новые типы данных нужно дополнительно готовить к анализу в системах обработки Больших Данных; приходится принимать решения о пригодности данных, принципах агрегации и необходимом уровне качества - такая подготовка может происходить вне хранилища.

  • На смену хранилищам данных придут озера данных

В реальности поставщики вводят заказчиков в заблуждение, позиционируя озера данных (data lake) как замену хранилищам или как критически важные элементы аналитической инфраструктуры. Основополагающим технологиям озер данных не хватает зрелости и широты функциональности, присущей хранилищам. Поэтому руководителям, отвечающим за управление данными, стоит подождать, пока озера достигнут того же уровня развития, считают в Gartner.

Accenture: 92% внедривших системы больших данных, довольны результатом

Среди главных преимуществ больших данных опрошенные назвали:

  • «поиск новых источников дохода» (56%),
  • «улучшение опыта клиентов» (51%),
  • «новые продукты и услуги» (50%) и
  • «приток новых клиентов и сохранение лояльности старых» (47%).

При внедрении новых технологий многие компании столкнулись с традиционными проблемами. Для 51% камнем преткновения стала безопасность, для 47% - бюджет, для 41% - нехватка необходимых кадров, а для 35% - сложности при интеграции с существующей системой. Практически все опрошенные компании (около 91%) планируют в скором времени решать проблему с нехваткой кадров и нанимать специалистов по большим данным.

Компании оптимистично оценивают будущее технологий больших данных. 89% считают, что они изменят бизнес столь же сильно, как и интернет. 79% респондентов отметили, что компании, которые не занимаются большими данными, потеряют конкурентное преимущество.

Впрочем, опрошенные разошлись во мнении о том, что именно стоит считать большими данными. 65% респондентов считают, что это «большие картотеки данных», 60% уверены, что это «продвинутая аналитика и анализ», а 50% - что это «данные инструментов визуализации».

Мадрид тратит 14,7 млн евро на управление большими данными

В июле 2014 г. стало известно о том, что Мадрид будет использовать технологии big data для управления городской инфраструктурой. Стоимость проекта - 14,7 млн евро, основу внедряемых решений составят технологии для анализа и управления большими данными. С их помощью городская администрация будет управлять работой с каждым сервис-провайдером и соответствующим образом оплачивать ее в зависимости от уровня услуг.

Речь идет о подрядчиках администрации, которые следят за состоянием улиц, освещением, ирригацией, зелеными насаждениями, осуществляют уборку территории и вывоз, а также переработку мусора. В ходе проекта для специально выделенных инспекторов разработаны 300 ключевых показателей эффективности работы городских сервисов, на базе которых ежедневно будет осуществляться 1,5 тыс. различных проверок и замеров. Кроме того, город начнет использование инновационной технологическлй платформы под названием Madrid iNTeligente (MiNT) - Smarter Madrid.

2013

Эксперты: Пик моды на Big Data

Все без исключения вендоры на рынке управления данными в это время ведут разработку технологий для менеджмента Big Data. Этот новый технологический тренд также активно обсуждается профессиональными сообществом, как разработчиками, так и отраслевыми аналитиками и потенциальными потребителями таких решений.

Как выяснила компания Datashift, по состоянию на январь 2013 года волна обсуждений вокруг «больших данных » превысила все мыслимые размеры. Проанализировав число упоминаний Big Data в социальных сетях, в Datashift подсчитали, что за 2012 год этот термин употреблялся около 2 млрд раз в постах, созданных около 1 млн различных авторов по всему миру. Это эквивалентно 260 постам в час, причем пик упоминаний составил 3070 упоминаний в час.

Gartner: Каждый второй ИТ-директор готов потратиться на Big data

После нескольких лет экспериментов с технологиями Big data и первых внедрений в 2013 году адаптация подобных решений значительно возрастет, прогнозируют в Gartner . Исследователи опросили ИТ-лидеров во всем мире и установили, что 42% опрошенных уже инвестировали в технологии Big data или планируют совершить такие инвестиции в течение ближайшего года (данные на март 2013 года).

Компании вынуждены потратиться на технологии обработки больших данных , поскольку информационный ландшафт стремительно меняется, требую новых подходов к обработки информации. Многие компании уже осознали, что большие массивы данных являются критически важными, причем работа с ними позволяет достичь выгод, не доступных при использовании традиционных источников информации и способов ее обработки. Кроме того, постоянное муссирование темы «больших данных» в СМИ подогревает интерес к соответствующим технологиям.

Фрэнк Байтендидк (Frank Buytendijk), вице-президент Gartner, даже призвал компании умерить пыл, поскольку некоторые проявляют беспокойство, что отстают от конкурентов в освоении Big data.

«Волноваться не стоит, возможности для реализации идей на базе технологий «больших данных» фактически безграничны», - заявил он.

По прогнозам Gartner, к 2015 году 20% компаний списка Global 1000 возьмут стратегический фокус на «информационную инфраструктуру».

В ожидании новых возможностей, которые принесут с собой технологии обработки «больших данных», уже сейчас многие организации организуют процесс сбора и хранения различного рода информации.

Для образовательных и правительственных организаций, а также компаний отрасли промышленности наибольший потенциал для трансформации бизнеса заложен в сочетании накопленных данных с так называемыми dark data (дословно – «темными данными»), к последним относятся сообщения электронной почты, мультимедиа и другой подобный контент. По мнению Gartner, в гонке данных победят именно те, кто научится обращаться с самыми разными источниками информации.

Опрос Cisco: Big Data поможет увеличить ИТ-бюджеты

В ходе исследования (весна 2013 года) под названием Cisco Connected World Technology Report, проведенного в 18 странах независимой аналитической компанией InsightExpress, были опрошены 1 800 студентов колледжей и такое же количество молодых специалистов в возрасте от 18 до 30 лет. Опрос проводился, чтобы выяснить уровень готовности ИТ-отделов к реализации проектов Big Data и получить представление о связанных с этим проблемах, технологических изъянах и стратегической ценности таких проектов.

Большинство компаний собирает, записывает и анализирует данные. Тем не менее, говорится в отчете, многие компании в связи с Big Data сталкиваются с целым рядом сложных деловых и информационно-технологических проблем. К примеру, 60 процентов опрошенных признают, что решения Big Data могут усовершенствовать процессы принятия решений и повысить конкурентоспособность, но лишь 28 процентов заявили о том, что уже получают реальные стратегические преимущества от накопленной информации.

Более половины опрошенных ИТ-руководителей считают, что проекты Big Data помогут увеличить ИТ-бюджеты в их организациях, так как будут предъявляться повышенные требования к технологиям, персоналу и профессиональным навыкам. При этом более половины респондентов ожидают, что такие проекты увеличат ИТ-бюджеты в их компаниях уже в 2012 году. 57 процентов уверены в том, что Big Data увеличит их бюджеты в течение следующих трех лет.

81 процент респондентов заявили, что все (или, по крайней мере, некоторые) проекты Big Data потребуют применения облачных вычислений. Таким образом, распространение облачных технологий может сказаться на скорости распространения решений Big Data и на ценности этих решений для бизнеса.

Компании собирают и используют данные самых разных типов, как структурированные, так и неструктурированные. Вот из каких источников получают данные участники опроса (Cisco Connected World Technology Report):

Почти половина (48 процентов) ИТ-руководителей прогнозирует удвоение нагрузки на их сети в течение ближайших двух лет. (Это особенно характерно для Китая , где такой точки зрения придерживаются 68 процентов опрошенных, и Германии – 60 процентов). 23 процента респондентов ожидают утроения сетевой нагрузки на протяжении следующих двух лет. При этом лишь 40 процентов респондентов заявили о своей готовности к взрывообразному росту объемов сетевого трафика.

27 процентов опрошенных признали, что им необходимы более качественные ИТ-политики и меры информационной безопасности .

21 процент нуждается в расширении полосы пропускания.

Big Data открывает перед ИТ-отделами новые возможности для наращивания ценности и формирования тесных отношений с бизнес-подразделениями, позволяя повысить доходы и укрепить финансовое положение компании. Проекты Big Data делают ИТ-подразделения стратегическим партнером бизнес-подразделений.

По мнению 73 процентов респондентов, именно ИТ-отдел станет основным локомотивом реализации стратегии Big Data. При этом, считают опрошенные, другие отделы тоже будут подключаться к реализации этой стратегии. Прежде всего, это касается отделов финансов (его назвали 24 процента респондентов), научно-исследовательского (20 процентов), операционного (20 процентов), инженерного (19 процентов), а также отделов маркетинга (15 процентов) и продаж (14 процентов).

Gartner: Для управления большими данными нужны миллионы новых рабочих мест

Мировые ИТ расходы достигнут $3,7 млрд к 2013 году, что на 3,8% больше расходов на информационные технологии в 2012 году (прогноз на конец года составляет $3,6 млрд). Сегмент больших данных (big data) будет развиваться гораздо более высокими темпами, говорится в отчете Gartner .

К 2015 году 4,4 млн рабочих мест в сфере информационных технологий будет создано для обслуживания больших данных, из них 1,9 млн рабочих мест – в . Более того, каждое такое рабочее место повлечет за собой создание трех дополнительных рабочих мест за пределами сферы ИТ, так что только в США в ближайшие четыре года 6 млн человек будет трудиться для поддержания информационной экономики.

По мнению экспертов Gartner, главная проблема состоит в том, что в отрасли для этого недостаточно талантов: как частная, так и государственная образовательная система, например, в США не способны снабжать отрасль достаточным количеством квалифицированных кадров. Так что из упомянутых новых рабочих мест в ИТ кадрами будет обеспечено только одно из трех.

Аналитики полагают, что роль взращивания квалифицированных ИТ кадров должны брать на себя непосредственно компании, которые в них остро нуждаются, так как такие сотрудники станут пропуском для них в новую информационную экономику будущего.

2012

Первый скепсис в отношении "Больших данных"

Аналитики компаний Ovum и Gartner предполагают, что для модной в 2012 году темы больших данных может настать время освобождения от иллюзий.

Термином «Большие Данные», в это время как правило, обозначают постоянно растущий объем информации, поступающей в оперативном режиме из социальных медиа, от сетей датчиков и других источников, а также растущий диапазон инструментов, используемых для обработки данных и выявления на их основе важных бизнес-тенденций.

«Из-за шумихи (или несмотря на нее) относительно идеи больших данных производители в 2012 году с огромной надеждой смотрели на эту тенденцию», - отметил Тони Байер, аналитик Ovum.

Байер сообщил, что компания DataSift провела ретроспективный анализ упоминаний больших данных в

Любое действие пользователя в интернете — давно не тайна за семью печатями. Вы можете отслеживать буквально всё — от онлайн-покупок до лайков — благодаря концепции Big Data. Результат — вы узнаёте больше о целевой аудитории и делаете персонализированные предложения. Точнее, всё делает за вас машина: и проанализирует, и даже оптимальное решение примет.

Скажете, это фантастика? Конечно, механизм пока не так распространен, особенно в России, и не полностью отлажен, но первые шаги на пути к этому точно сделаны.

Если речь идет о больших данных, важно не то, сколько вы их собрали, а то, как вы их используете. Вообще Big Data — это универсальная методика. В этой статье мы рассмотрим её применение в маркетинге и продажах.

Что такое Big Data

Крупные транспортные компании, интернет-магазины, телеком-провайдеры, SaaS-сервисы, банки — одним словом, компании с большой клиентской базой собирают огромный объем информации.

Это не только персональные данные (имя, email, телефон, пол, возраст, география), а также IP-адрес, время посещения сайта, количество визитов, запросы на сайте, история покупок и т.д. У каждой фирмы — своя специфика и свои уникальные данные, которые доступны только ей.

Например, сервис такси «знает» каждый шаг и секунду, которую пользователь провел в поездке. Банковский онлайн-сервис — за что, когда и какой суммой расплачивался. Интернет-магазин — какие товары смотрел, положил в корзину или добавил в избранное и т.д.

То есть это не только те данные, которые накапливает каждый бизнес в CRM-системе. Это всё, что компании может быть известно о клиентах, и это может измеряться терабайтами информации в отдельных случаях. Обычные базы не могут обрабатывать такие объемы. Хотя бы потому, что данные регулярно меняются и прибывают — вертикально (+ новый клиент) и горизонтально (+ дополнительная информация о клиенте).

Кроме того, они разноплановые и неструктурированные, так как представлены в абсолютно разных источниках, например:

  • Блоги и соцсети;
  • Аудио- и видеофайлы;
  • Корпоративные базы данных;
  • Датчики, измерительные устройства и сенсорные сети.

Это и есть Big Data. Нечто более абстрактное, чем физические документы, поэтому и управлять ими человеку не под силу. На помощь приходят машинные алгоритмы.

Data Mining или как собираются и обрабатываются большие данные

Откуда берутся большие данные?

Во-первых, это ваш сайт и все точки захвата контактных данных.

Во-вторых, счетчики и системы аналитики (Яндекс.Метрика, Google Analytics).

Как обрабатываются большие данные? Вот основные решения рынка Big Data:

Системы управления базами данных (Sap, Oracle, Microsoft, IBM и другие), которые хранят и обрабатывают информацию, анализируют динамику показателей и предоставляют результаты в статистических отчетах;

  • Сервисы управления закупками RTB-рекламы, которые предсказывают действия целевых пользователей и таргетируют рекламу в онлайн-каналах (например, Segmento, RTB-Media);
  • Сервисы товарных рекомендаций, которые показывают на сайте товары, максимально интересные для конкретного пользователя (RetailRocket, 1С-Битрикс BigData);
  • Сервисы персонализации контента, которые показывают пользователям наиболее подходящие версии страниц ресурса (Personyze, Monoloop, Crosss);
  • Сервисы персонализации рассылок, которые отправляют таргетированные письма (например, Vero, Personyze);

Эти системы активно сотрудничают между собой, совершенствуются и обновляют функционал.

Как работает технология Big Data и что такое Data Science

Практическая суть такого подхода — в минимизации вовлеченности человека в процесс принятия решения. На этом основана концепция Data Science (дословно — «наука о данных»).

Согласно этой концепции, большими данными управляет статистическая модель. Она находит скрытые взаимосвязи в данных и максимально точно (благодаря объективности и широкой выборке данных) предсказывает поведение конкретного пользователя — купит ли он продукт, подпишется ли на рассылку, заинтересуется ли статьей.

При этом происходит непрерывный процесс самообучения. То есть машина сама учится (принцип Machine Learning) в реальном времени и создает алгоритмы для оптимизации бизнес-процессов.

Она самостоятельно определяет и подсказывает:

  • Что, где и когда предложить пользователю для максимальной вероятности конверсии;
  • Как увеличить кросс-продажи и дополнительные продажи;
  • Какие товары самые популярные и почему;
  • Как улучшить продукт / сервис под потребности ЦА.

В ритейле машины могут принимать следующие решения:

  • Где открыть следующий магазин;
  • Какие маркетинговые акции проводить;
  • Как прогнозировать продажи в будущем периоде;
  • Как выделить «ядро» аудитории;
  • Насколько повысить / снизить цены в следующем месяце;
  • Как оптимизировать маркетинговый бюджет;
  • Как определить клиентов, которые уйдут в будущем месяце.

В маркетинге это позволяет сегментировать целевую аудиторию, разрабатывать креативы и персональные предложения для каждого сегмента. К сожалению, на данный момент этот процесс автоматизирован лишь частично.

Вот вам пример.

Компания Target решила нестандартную задачу — таргетироваться на беременных женщин до того, как они будут вводить тематические запросы, поделятся новостью в соцсетях или другими способами расскажут об этом в интернете.

Как это удалось? Помогли знания о покупательских привычках. А именно Target обнаружил в ходе исследования, что будущие мамы покупают много лосьона без запаха, хлопчатобумажных салфеток и махровых мочалок.

Другой пример.

Российский сервис электронных книг Bookmate мало знал о реальных интересах своих пользователей. Они заходили в приложение, но предлагаемые книги их не интересовали. Ситуация улучшилась благодаря использованию информации из соцсетей. Просмотры рекомендаций выросли в 2,17 раза, а конверсия в платящих пользователей — в 1,4 раза.

Авиакомпания British Airways вывела персонализацию на абсолютно новый уровень. В рамках программы Know Me она распознает лица клиентов с помощью сервиса Google Images. Персонал узнает пассажиров в терминалах аэропортов или на борту самолета и лично приветствует их по имени.

Помимо этого, персональные данные пассажиров о предыдущих рейсах позволяют авиакомпании принести личные извинения тем, чем рейс в прошлом был задержан или чей багаж потерялся.

Эта и другая информация о базе (например, предпочтения в еде) есть в доступе у бортпроводников British Airways на специальных рабочих планшетах.

Big Data в e-commerce: кейс Нетологии

Цель — оптимизировать маркетинговые коммуникации для 3 интернет-магазинов косметики и средств ухода с ассортиментом более 500 товаров.

Что для этого сделали специалисты «Нетологии»?

Начали со сбора всех доступных данных о потребительском поведении клиентской базы — около 100 тысяч потребителей — из популярных ecommerce-систем Magento и Shopify.

  • Информация о покупках, корзинах, среднем чеке, времени заказов и т.д.;
  • Обратная связь подписчиков email-рассылки: данные об открытии писем и переходов по ссылкам из сервисов типа Mailchimp и Dotmailer, а также о последующей активности на сайте (просмотр карточек товаров, категорий, покупки после рассылки);
  • Активность повторных посещений постоянных клиентов по данным о просмотрах товаров до совершения покупки.

Из этих данных получили следующие показатели:

  • Оптимальный размер скидки;
  • Время жизни клиента и его общую ценность (LTV);
  • Вероятность повторных покупок.

Таким образом получился полноценный образ каждого клиента с уникальным набором предпочтений, привычек и особенностей.

Допустим:

Клиент А. Покупает каждый месяц один и тот же шампунь для волос. Нет причин делать дополнительные акции на этот товар для этого клиента. Лучше предложить ему через месяц купить дополнительно кондиционер или маску того же бренда.

Клиент B. Один раз купил туалетную воду и духи и после ничего не покупал. Однако просматривает рассылки от интернет-магазина и интересуется декоративной косметикой. Есть вероятность, что клиент В совершает покупки в другом месте. Предложение набора теней со скидкой может послужить решающим стимулом совершения покупки.

На основе этой информации система сформировала сегменты для запуска кампаний через email и Facebook — за неделю получилось от 40 до 100 автоматизированных кампаний для каждого бренда.

В ходе сбора данных исследователи выявили ряд триггеров. Например, некоторая группа пользователей просматривают почту по утрам, а вечером возвращаются домой и покупают увиденный товар. Есть смысл продублировать им товарное предложение вечером через дополнительный канал.

Результат: удалось утроить повторные продажи, повысить open rate писем в среднем на 70%, а конверсия из получивших письмо — на 83%.

«Очеловечивание» данных: кейс Яндекс.Такси

У Яндекс.Такси есть уникальные данные обо всех поездках. На основе них можно маркетинговые коммуникации сделать более эмоциональными. Основная идея — по-дружески «общаться» с клиентами и ненавязчиво напоминать о себе. Реализовать её помогла персональная статистика в виде историй и характеров.

Медиафасады

Маркетологи Яндекс.Такси выяснили самые популярные места в городе и маршруты. Для этого подсчитали количество заказов к самым значимым местам: паркам, театрам, музеям, памятникам. Эти данные не такие персональные и никого не обижают, но показывают, чем живет город.

Такие наблюдения позволили реализовать идею личного общения с аудиторией посредством медиафасадов. Дизайн оформили в виде дружеских сообщений в чате. Для каждого города — свои фразы.

Компания как будто перекидывается с человеком фразой, которую поймет только он. Ему приятно, так как это внимание и участие, а Яндекс.Такси рассчитывает на повышение узнаваемости бренда в городе.

При составлении текста использовали следующие приемы:

  • Городской сленг — местные слова, которые понимают все жители. Искали их в городских пабликах и форумах, а также уточняли у региональных менеджеров и краеведов. Например, в Казани загс называют «Чаша», набережную в Екатеринбурге — «Драма»;
  • Игра слов. Вот примеры:

3 090 человек, которые доехали до Мадрида на такси. А вы знаете толк в путешествиях! («Мадрид» — гостиница в Екатеринбурге).

958 человек, которые умчались к Юпитеру. Вы просто космос! («Юпитер» — название компании).

Это был тестовый эксперимент, сейчас Яндекс разрабатывает более комплексную кампанию с привлечением разных онлайн- и офлайн-источников.

Новогодние ролики

По итогам 2017 года Яндекс.Такси хотели рассказать клиентам, сколько времени они провели вместе и поблагодарить за это — сколько поездок, минут ожидания и утренних заказов.

Чтобы сделать это интересно, придумали вероятный сюжет для одной из миллиона поездок и сняли ролик на эту тему с цифрами из статистики.

Получилось следующее:


764 миллиона минут ожидания — влюбленная пара прощается у такси.


56 миллионов утренних поездок за год — мама с дочкой едут на утренник.


122 тысячи поездок с животными.

По результатам первой попытки выяснили, что ролики выглядят так, будто бренд хвастается большими числами. Чтобы точнее донести посыл «посмотрите, сколько времени в этом году мы провели вместе», статистику поменяли, чтобы сместить фокус на персонажей истории.


Сами по себе цифры ни о чём не говорят. Сложно понять, большая эта цифра или маленькая, и что ею хотели показать. Яндекс использовал данные не как самоцель, а как способ рассказать историю.

Пасхалки в приложении

Компания также придумала характеры для своих клиентов — «такситипы» — в зависимости от количества поездок, их длительности и минут ожидания. Механизм определения учитывал три этих характеристики, складывал из них образ клиента и относил к одной из категорий:


Данные оценивались по тому городу, где человек сделал свыше 70% поездок.

Алгоритм находил медиану по городу и относительно неё оценивал метрики — «много» или «мало» поездок, минут поездки и ожидания.

Узнать свой «такситип» мог каждый пользователь, который совершил больше 4 поездок за год, в приложении по кнопке:


Например:


Черная пума: ездил много, поездки короткие, редко выходил вовремя


Дальновидный странник: ездил много, долго и выходил к автомобилю вовремя

20% из тех, кто просматривал, заскринивали результаты и делились ими в соцсетях — это в два раза больше, чем предвещали прогнозы!

Статистика для водителей


Будущее Big Data

Эксперименты с большими данными продолжаются.

Яндекс — одна из компаний-пионеров, которые не только обучают концепции Data Science, но и активно используют её в разработке собственных продуктов.

Возьмем блоговую платформу Яндекс.Дзен. Она доступна в разных странах. Не нужно сортировать материал по темам и другим параметрам и настраивать показ на определенные категории пользователей. Каждый будет читать статьи, которые ему интересны и получать новую подборку похожих. Система просто предлагает то, что ему вероятнее всего понравится.

Дело в том, что машинный интеллект направлен не на усреднение. Он не стремится создать ограниченное количество сегментов, так как его возможности позволяют предлагать персонализированный контент каждому из нескольких миллиардов пользователей.

Зарубежным аналогом можно назвать alexa.com - это рейтинг наиболее посещаемых сайтов во всем мире и в разных странах по отдельности (выборки по странам платные и стоят денег).

Автоматический сбор данных (через свои сервисы, такие как «Яндекс.Браузер» и др.) и статистические модели позволяют включать в список сайты, которые в других рейтингах не принимают участия.

Даже в текущем виде это дает возможность в различных нишах выявлять лидеров и с помощью других сервисов моделировать их стратегии продвижения и источники трафика.

Допустим, вы отбираете 5-10 пользователей — а машина находит тысячи похожих и настраивает на них таргетинг. Преимущество машинного интеллекта в том, что он учитывает факторы, которые даже опытный специалист может упустить из виду, не догадаться о них.

  • Научитесь отличать, какие решения лучше принимает человек, а какие — машина, и не путайте два этих класса. Если с однотипными задачами (выбрать дизайн кнопки) алгоритмы справляются лучше, более творческие (сконструировать сайт с нуля) сможет только человек.
  • Обучайте не только людей, но и алгоритмы;
  • Учитывайте, что хотя алгоритмы великолепно отвечают на вопросы, но сами задавать вопросы не умеют. Хотя возможно, это тоже вопрос времени.

Кстати, вопрос о «противостоянии» человека и машинного интеллекта поднимается всё чаще. По этому поводу посмотрите баттл Андрей Себрант vs Антон Буланов (директор ИНВИТРО — крупнейшей частной медицинской компании).

Про сегментацию, маркетологов с топорами, прожигание бюджетов и появится ли в скором будущем кнопка «Приведите мне клиентов».

Смотрится на одном дыхании.

Предисловие

“Big data” - модный нынче термин, фигурирующий почти на всех профессиональных конференциях, посвященных анализу данных, прогностической аналитике, интеллектуальному анализу данных (data mining), CRM. Термин используется в сферах, где актуальна работа с качественно большими объемами данных, где постоянно происходит увеличение скорости потока данных в организационный процесс: экономике, банковской деятельности, производстве, маркетинге, телекоммуникациях, веб-аналитике, медицине и др.

Вместе со стремительным накоплением информации быстрыми темпами развиваются и технологии анализа данных. Если еще несколько лет назад было возможно, скажем, лишь сегментировать клиентов на группы со схожими предпочтениями, то теперь возможно строить модели для каждого клиента в режиме реального времени, анализируя, например, его перемещение по сети Интернет для поиска конкретного товара. Интересы потребителя могут быть проанализированы, и в соответствии с построенной моделью выведена подходящая реклама или конкретные предложения. Модель также может настраиваться и перестраиваться в режиме реального времени, что было немыслимо еще несколько лет назад.

В области телекоммуникации, например, развиты технологии для определения физического расположения сотовых телефонов и их владельцев, и, кажется, в скором времени станет реальностью идея, описанная в научно-фантастическом фильме «Особое мнение», 2002 года, где отображение рекламной информации в торговых центрах учитывала интересы конкретных лиц, проходящих мимо.

В то же время, существуют ситуации, когда увлечение новыми технологиями может привести и к разочарованию. Например, иногда разреженные данные (Sparse data ), дающие важное понимание действительности, являются гораздо более ценными, чем Большие данные (Big Data), описывающие горы, зачастую, не существенной информации.

Цель данной статьи - прояснить и обдумать новые возможности Big Data и проиллюстрировать, как аналитическая платформа STATISTICA компании StatSoft может помочь в эффективном использовании Big Data для оптимизации процессов и решения задач.

Насколько большие Big Data?

Конечно, правильный ответ на данный вопрос должен звучать - «это зависит…»

В современных обсуждениях понятие Big Data описывают как данные объема в порядках терабайт.

На практике (если речь идет о гигабайтах или терабайтах), такие данные легко хранить и управлять ими с помощью «традиционных» баз данных и стандартного оборудования (сервера баз данных).

Программное обеспечение STATISTICA использует многопоточную технологию для алгоритмов доступа к данным (чтения), преобразования и построения прогностических (и скоринговых) моделей, поэтому такие выборки данных могут быть легко проанализированы, и не требуют специализированных инструментов.

В некоторых текущих проектах StatSoft обрабатываются выборки порядка 9-12 миллионов строк. Умножим их на 1000 параметров (переменных), собранных и организованных в хранилище данных для построения рисковых или прогностических моделей. Такого рода файл будет иметь объем “только” около 100 гигабайт. Это, конечно, не маленькое хранилище данных, но его размеры не превышают возможностей технологии стандартных баз данных.

Линейка продуктов STATISTICA для пакетного анализа и построения скоринговых моделей (STATISTICA Enterprise ), решения, работающие в режиме реального времени (STATISTICA Live Score ), и аналитические инструменты для создания и управления моделями (STATISTICA Data Miner , Decisioning ) легко масштабируются на несколько серверов с многоядерными процессорами.

На практике это означает, что достаточная скорость работы аналитических моделей (например, прогнозы в отношении кредитного риска, вероятности мошенничества, надежности узлов оборудования, и т.д.) позволяющая принимать оперативные решения, почти всегда может быть достигнута с помощью стандартных инструментов STATISTICA .

От больших объемов данных к Big Data

Как правило, обсуждение Big Data сосредоточено вокруг хранилищ данных (и проведении анализа, основанных на таких хранилищах), объемом намного больше, чем просто несколько терабайт.

В частности, некоторые хранилища данных могут вырасти до тысячи терабайт, т.е., до петабайт (1000 терабайт = 1 петабайт).

За пределами петабайт, накопление данных может быть измерено в эксабайтах, например, в производственном секторе по всему миру в 2010 году, по оценкам, накоплено в общей сложности 2 эксабайта новой информации (Manyika et al., 2011 г.).

Существуют отрасли, где данные собираются и накапливаются очень интенсивно.

Например, в производственной сфере, такой как электростанции, непрерывный поток данных генерируется иногда для десятков тысяч параметров каждую минуту или даже каждую секунду.

Кроме того, за последние несколько лет, внедряются так называемые “smart grid” технологии, позволяющие коммунальным службам измерять потребление электроэнергии отдельными семьями каждую минуту или каждую секунду.

Для такого рода приложений, в которых данные должны храниться годами, накопленные данные классифицируются как Extremely Big Data.

Растет и число приложений Big Data среди коммерческих и государственных секторов, где объем данных в хранилищах, может составлять сотни терабайт или петабайт.

Современные технологии позволяют «отслеживать» людей и их поведение различными способами. Например, когда мы пользуемся интернетом, делаем покупки в Интернет-магазинах или крупных сетях магазинов, таких как Walmart (согласно Википедии, хранилище данных Walmart оценивается более чем в 2 петабайт), или перемещаемся с включенными мобильными телефонами - мы оставляем след наших действий, что приводит к накоплению новой информации.

Различные способы связи, от простых телефонных звонков до загрузки информации через сайты социальных сетей, таких как Facebook (согласно данным Википедии, обмен информацией каждый месяц составляет 30 млрд. единиц), или обмен видео на таких сайтах, как YouTube (Youtube утверждает, что он загружает 24 часа видео каждую минуту; см. Wikipedia), ежедневно генерируют огромное количество новых данных.

Аналогичным образом, современные медицинские технологии генерируют большие объемы данных, относящиеся к оказанию медицинской помощи (изображения, видео, мониторинг в реальном времени).

Итак, классификацию объемов данных можно представить так:

Большие наборы данных: от 1000 мегабайт (1 гигабайт) до сотен гигабайт

Огромные наборы данных: от 1000 гигабайт (1терабайт) до нескольких терабайт

Big Data: от нескольких терабайт до сотен терабайт

Extremely Big Data: от 1000 до 10000 терабайт = от 1 до 10 петабайт

Задачи, связанные с Big Data

Существуют три типа задач связанных с Big Data:

1. Хранение и управление

Объем данных в сотни терабайт или петабайт не позволяет легко хранить и управлять ими с помощью традиционных реляционных баз данных.

2. Неструктурированная информация

Большинство всех данных Big Data являются неструктурированными. Т.е. как можно организовать текст, видео, изображения, и т.д.?

3. Анализ Big Data

Как анализировать неструктурированную информацию? Как на основе Big Data составлять простые отчеты, строить и внедрять углубленные прогностические модели?

Хранение и управление Big Data

Big Data обычно хранятся и организуются в распределенных файловых системах.

В общих чертах, информация хранится на нескольких (иногда тысячах) жестких дисках, на стандартных компьютерах.

Так называемая «карта» (map) отслеживает, где (на каком компьютере и/или диске) хранится конкретная часть информации.

Для обеспечения отказоустойчивости и надежности, каждую часть информации обычно сохраняют несколько раз, например - трижды.

Так, например, предположим, что вы собрали индивидуальные транзакции в большой розничной сети магазинов. Подробная информация о каждой транзакции будет храниться на разных серверах и жестких дисках, а «карта» (map) индексирует, где именно хранятся сведения о соответствующей сделке.

С помощью стандартного оборудования и открытых программных средств для управления этой распределенной файловой системой (например, Hadoop ), сравнительно легко можно реализовать надежные хранилища данных в масштабе петабайт.

Неструктурированная информация

Большая часть собранной информации в распределенной файловой системе состоит из неструктурированных данных, таких как текст, изображения, фотографии или видео.

Это имеет свои преимущества и недостатки.

Преимущество состоит в том, что возможность хранения больших данных позволяет сохранять “все данные”, не беспокоясь о том, какая часть данных актуальна для последующего анализа и принятия решения.

Недостатком является то, что в таких случаях для извлечения полезной информации требуется последующая обработка этих огромных массивов данных.

Хотя некоторые из этих операций могут быть простыми (например, простые подсчеты, и т.д.), другие требуют более сложных алгоритмов, которые должны быть специально разработаны для эффективной работы на распределенной файловой системе.

Один топ-менеджер однажды рассказал StatSoft что он «потратил целое состояние на IT и хранение данных, но до сих пор не начал получать денег», потому что не думал о том, как лучше использовать эти данные для улучшения основной деятельности.

Итак, в то время как объем данных может расти в геометрической прогрессии, возможности извлекать информацию и действовать на основе этой информации, ограничены и будут асимптотически достигать предела.

Важно, чтобы методы и процедуры для построения, обновления моделей, а также для автоматизации процесса принятия решений были разработаны наряду с системами хранения данных, чтобы гарантировать, что такие системы являются полезными и выгодными для предприятия.

Анализ Big Data

Это действительно большая проблема, связанная с анализом неструктурированных данных Big Data: как анализировать их с пользой. О данном вопросе написано гораздо меньше, чем о хранении данных и технологиях управления Big Data.

Есть ряд вопросов, которые следует рассмотреть.

Map-Reduce

При анализе сотни терабайт или петабайт данных, не представляется возможным извлечь данные в какое-либо другое место для анализа (например, в STATISTICA Enterprise Analysis Server ).

Процесс переноса данных по каналам на отдельный сервер или сервера (для параллельной обработки) займет слишком много времени и требует слишком большого трафика.

Вместо этого, аналитические вычисления должны быть выполнены физически близко к месту, где хранятся данные.

Алгоритм Map-Reduce представляет собой модель для распределенных вычислений. Принцип его работы заключается в следующем: происходит распределение входных данных на рабочие узлы (individual nodes) распределенной файловой системы для предварительной обработки (map-шаг) и, затем, свертка (объединение) уже предварительно обработанных данных (reduce-шаг).

Таким образом, скажем, для вычисления итоговой суммы, алгоритм будет параллельно вычислять промежуточные суммы в каждом из узлов распределенной файловой системы, и затем суммировать эти промежуточные значения.

В Интернете доступно огромное количество информации о том, каким образом можно выполнять различные вычисления с помощью модели map-reduce, в том числе и для прогностической аналитики.

Простые статистики, Business Intelligence (BI)

Для составления простых отчетов BI, существует множество продуктов с открытым кодом, позволяющих вычислять суммы, средние, пропорции и т.п. с помощью map-reduce.

Таким образом, получить точные подсчеты и другие простые статистики для составления отчетов очень легко.

Прогнозное моделирование, углубленные статистики

На первый взгляд может показаться, что построение прогностических моделей в распределенной файловой системой сложнее, однако это совсем не так. Рассмотрим предварительные этапы анализа данных.

Подготовка данных. Некоторое время назад StatSoft провел серию крупных и успешных проектов с участием очень больших наборов данных, описывающих поминутные показатели процесса работы электростанции. Цель проводимого анализа заключалась в повышении эффективности деятельности электростанции и понижении количества выбросов (Electric Power Research Institute, 2009).

Важно, что, несмотря на то, что наборы данных могут быть очень большими, информация, содержащаяся в них, имеет значительно меньшую размерность.

Например, в то время как данные накапливаются ежесекундно или ежеминутно, многие параметры (температура газов и печей, потоки, положение заслонок и т.д.) остаются стабильными на больших интервалах времени. Иначе говоря, данные, записывающиеся каждую секунду, являются в основном повторениями одной и той же информации.

Таким образом, необходимо проводить “умное” агрегирование данных, получая для моделирования и оптимизации данные, которые содержат только необходимую информацию о динамических изменениях, влияющих на эффективность работы электростанции и количество выбросов.

Классификация текстов и предварительная обработка данных. Проиллюстрируем ещё раз, как большие наборы данных могут содержать гораздо меньше полезной информации.

Например, StatSoft участвовал в проектах, связанных с анализом текстов (text mining) из твитов, отражающих, насколько пассажиры удовлетворены авиакомпаниями и их услугами.

Несмотря на то, что ежечасно и ежедневно было извлечено большое количество соответствующих твитов, настроения, выраженные в них, были довольно простыми и однообразными. Большинство сообщений - жалобы и краткие сообщения из одного предложения о “плохом опыте”. Кроме того, число и “сила” этих настроений относительно стабильны во времени и в конкретных вопросах (например, потерянный багаж, плохое питание, отмена рейсов).

Таким образом, сокращение фактических твитов до скора (оценки) настроения, используя методы text mining (например, реализованные в STATISTICA Text Miner ), приводит к гораздо меньшему объему данных, которые затем могут быть легко сопоставлены с существующими структурированными данными (фактические продажи билетов, или информация о часто летающих пассажирах). Анализ позволяет разбить клиентов на группы и изучить их характерные жалобы.

Существует множество инструментов для проведения такого агрегирования данных (например, скор настроений) в распределенной файловой системе, что позволяет легко осуществлять данный аналитический процесс.

Построение моделей

Часто задача состоит в том, чтобы быстро построить точные модели для данных, хранящихся в распределенной файловой системе.

Существуют реализации map-reduce для различных алгоритмов data mining/прогностической аналитики, подходящих для масштабной параллельной обработки данных в распределенной файловой системе (что может быть поддержано с помощью платформы STATISTICА StatSoft).

Однако, именно из-за того, что вы обработали очень большое количество данных, уверенны ли вы, что итоговая модель является действительно более точной?

На самом деле, скорее всего, удобнее строить модели для небольших сегментов данных в распределенной файловой системе.

Как говорится в недавнем отчете Forrester: «Два плюс два равняется 3,9 - это обычно достаточно хорошо» (Hopkins & Evelson, 2011).

Статистическая и математическая точность заключается в том, что модель линейной регрессии, включающая, например, 10 предикторов, основанных на правильно сделанной вероятностной выборке из 100 000 наблюдений, будет так же точна, как модель, построенная на 100 миллионах наблюдений.